Please help me!!! i have trained my controlnet model use my own data,but there is only the tensorboard for the training loss.so i want to use the training dataset agian to test the model and get the loss of every test image,how can i do?
Below is my training code:
from share import *
import pytorch_lightning as pl
from torch.utils.data import DataLoader
from tutorial_dataset import MyDataset
from cldm.logger import ImageLogger
from cldm.model import create_model, load_state_dict
Please help me!!! i have trained my controlnet model use my own data,but there is only the tensorboard for the training loss.so i want to use the training dataset agian to test the model and get the loss of every test image,how can i do? Below is my training code:
from share import * import pytorch_lightning as pl from torch.utils.data import DataLoader from tutorial_dataset import MyDataset from cldm.logger import ImageLogger from cldm.model import create_model, load_state_dict
Configs
resume_path = './models/control_sd15.ckpt' batch_size = 4 logger_freq = 300 learning_rate = 1e-5 sd_locked = True only_mid_control = False
First use cpu to load models. Pytorch Lightning will automatically move it to GPUs.
model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict(resume_path, location='cpu')) model.learning_rate = learning_rate model.sd_locked = sd_locked model.only_mid_control = only_mid_control
Misc
dataset = MyDataset() dataloader = DataLoader(dataset, num_workers=0, batch_size=batch_size, shuffle=True) logger = ImageLogger(batch_frequency=logger_freq) trainer = pl.Trainer(gpus=1, precision=32, callbacks=[logger])
Train!
trainer.fit(model, dataloader)