A100 platform
cuda118
run command: python gradio_canny2image.py
log show as below:
ad.
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
gradio_canny2image.py:98: GradioDeprecationWarning: The 'grid' parameter will be deprecated. Please use 'grid_cols' in the constructor instead.
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
Running on local URL: http://0.0.0.0:5000
IMPORTANT: You are using gradio version 3.38.0, however version 4.29.0 is available, please upgrade.
This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run gradio deploy from Terminal to deploy to Spaces (https://huggingface.co/spaces)
curr-time: 0:00:00.001951
Global seed set to 1706203096
Data shape for DDIM sampling is (1, 4, 104, 64), eta 0.0
Running DDIM Sampling with 20 timesteps
DDIM Sampler: 0%| | 0/20 [00:00<?, ?it/s]
Traceback (most recent call last):
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/gradio/routes.py", line 442, in run_predict
output = await app.get_blocks().process_api(
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/gradio/blocks.py", line 1389, in process_api
result = await self.call_function(
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/gradio/blocks.py", line 1094, in call_function
prediction = await anyio.to_thread.run_sync(
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/anyio/to_thread.py", line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/anyio/_backends/_asyncio.py", line 2357, in run_sync_in_worker_thread
return await future
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/anyio/_backends/_asyncio.py", line 864, in run
result = context.run(func, args)
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/gradio/utils.py", line 703, in wrapper
response = f(args, kwargs)
File "gradio_canny2image.py", line 59, in process
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, *kwargs)
File "/home/ControlNet/cldm/ddim_hacked.py", line 103, in sample
samples, intermediates = self.ddim_sampling(conditioning, size,
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(args, kwargs)
File "/home/ControlNet/cldm/ddim_hacked.py", line 163, in ddim_sampling
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, kwargs)
File "/home/ControlNet/cldm/ddim_hacked.py", line 190, in p_sample_ddim
model_t = self.model.apply_model(x, t, c)
File "/home/ControlNet/cldm/cldm.py", line 337, in apply_model
control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt)
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, *kwargs)
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(args, kwargs)
File "/home/ControlNet/cldm/cldm.py", line 288, in forward
guided_hint = self.input_hint_block(hint, emb, context)
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, kwargs)
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, *kwargs)
File "/home/ControlNet/ldm/modules/diffusionmodules/openaimodel.py", line 86, in forward
x = layer(x)
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(args, kwargs)
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 458, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 454, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
A100 platform cuda118 run command: python gradio_canny2image.py
log show as below:
ad. result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') gradio_canny2image.py:98: GradioDeprecationWarning: The 'grid' parameter will be deprecated. Please use 'grid_cols' in the constructor instead. result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') Running on local URL: http://0.0.0.0:5000 IMPORTANT: You are using gradio version 3.38.0, however version 4.29.0 is available, please upgrade.
Running on public URL: https://49b5cf058a69109bd7.gradio.live
This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run
gradio deploy
from Terminal to deploy to Spaces (https://huggingface.co/spaces) curr-time: 0:00:00.001951 Global seed set to 1706203096 Data shape for DDIM sampling is (1, 4, 104, 64), eta 0.0 Running DDIM Sampling with 20 timesteps DDIM Sampler: 0%| | 0/20 [00:00<?, ?it/s] Traceback (most recent call last): File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/gradio/routes.py", line 442, in run_predict output = await app.get_blocks().process_api( File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/gradio/blocks.py", line 1389, in process_api result = await self.call_function( File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/gradio/blocks.py", line 1094, in call_function prediction = await anyio.to_thread.run_sync( File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/anyio/to_thread.py", line 56, in run_sync return await get_async_backend().run_sync_in_worker_thread( File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/anyio/_backends/_asyncio.py", line 2357, in run_sync_in_worker_thread return await future File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/anyio/_backends/_asyncio.py", line 864, in run result = context.run(func, args) File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/gradio/utils.py", line 703, in wrapper response = f(args, kwargs) File "gradio_canny2image.py", line 59, in process samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, *kwargs) File "/home/ControlNet/cldm/ddim_hacked.py", line 103, in sample samples, intermediates = self.ddim_sampling(conditioning, size, File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(args, kwargs) File "/home/ControlNet/cldm/ddim_hacked.py", line 163, in ddim_sampling outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, kwargs) File "/home/ControlNet/cldm/ddim_hacked.py", line 190, in p_sample_ddim model_t = self.model.apply_model(x, t, c) File "/home/ControlNet/cldm/cldm.py", line 337, in apply_model control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt) File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, *kwargs) File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(args, kwargs) File "/home/ControlNet/cldm/cldm.py", line 288, in forward guided_hint = self.input_hint_block(hint, emb, context) File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(*args, kwargs) File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, *kwargs) File "/home/ControlNet/ldm/modules/diffusionmodules/openaimodel.py", line 86, in forward x = layer(x) File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl return self._call_impl(args, kwargs) File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl return forward_call(*args, **kwargs) File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 458, in forward return self._conv_forward(input, self.weight, self.bias) File "/opt/conda/envs/controlnet/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 454, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZEDpip list show as below:
Package Version
absl-py 2.1.0 aiofiles 23.2.1 aiohappyeyeballs 2.4.3 aiohttp 3.10.9 aiosignal 1.3.1 altair 5.4.1 annotated-types 0.7.0 antlr4-python3-runtime 4.8 anyio 4.5.0 async-timeout 4.0.3 attrs 24.2.0 cachetools 5.5.0 certifi 2024.8.30 charset-normalizer 3.4.0 click 8.1.7 contourpy 1.1.1 cycler 0.12.1 diffusers 0.30.3 einops 0.3.0 exceptiongroup 1.2.2 fastapi 0.115.0 ffmpy 0.4.0 filelock 3.16.1 fonttools 4.54.1 frozenlist 1.4.1 fsspec 2024.9.0 ftfy 6.2.3 future 1.0.0 google-auth 2.35.0 google-auth-oauthlib 1.0.0 gradio 3.38.0 gradio_client 1.3.0 grpcio 1.66.2 h11 0.14.0 httpcore 1.0.6 httpx 0.27.2 huggingface-hub 0.25.2 idna 3.10 importlib_metadata 8.5.0 importlib_resources 6.4.5 Jinja2 3.1.4 jsonschema 4.23.0 jsonschema-specifications 2023.12.1 kiwisolver 1.4.7 lightning-utilities 0.11.7 linkify-it-py 2.0.3 Markdown 3.7 markdown-it-py 2.2.0 MarkupSafe 2.1.5 matplotlib 3.7.5 mdit-py-plugins 0.3.3 mdurl 0.1.2 mpmath 1.3.0 multidict 6.1.0 narwhals 1.9.2 networkx 3.1 numpy 1.24.4 nvidia-cublas-cu11 11.11.3.6 nvidia-cublas-cu12 12.1.3.1 nvidia-cuda-cupti-cu11 11.8.87 nvidia-cuda-cupti-cu12 12.1.105 nvidia-cuda-nvrtc-cu11 11.8.89 nvidia-cuda-nvrtc-cu12 12.1.105 nvidia-cuda-runtime-cu11 11.8.89 nvidia-cuda-runtime-cu12 12.1.105 nvidia-cudnn-cu11 9.1.0.70 nvidia-cudnn-cu12 9.1.0.70 nvidia-cufft-cu11 10.9.0.58 nvidia-cufft-cu12 11.0.2.54 nvidia-curand-cu11 10.3.0.86 nvidia-curand-cu12 10.3.2.106 nvidia-cusolver-cu11 11.4.1.48 nvidia-cusolver-cu12 11.4.5.107 nvidia-cusparse-cu11 11.7.5.86 nvidia-cusparse-cu12 12.1.0.106 nvidia-nccl-cu11 2.20.5 nvidia-nccl-cu12 2.20.5 nvidia-nvjitlink-cu12 12.6.77 nvidia-nvtx-cu11 11.8.86 nvidia-nvtx-cu12 12.1.105 oauthlib 3.2.2 omegaconf 2.1.1 open-clip-torch 2.0.2 opencv-python 4.10.0.84 orjson 3.10.7 packaging 24.1 pandas 2.0.3 pillow 10.4.0 pip 24.2 pkgutil_resolve_name 1.3.10 propcache 0.2.0 protobuf 5.28.2 pyasn1 0.6.1 pyasn1_modules 0.4.1 pycryptodome 3.21.0 pydantic 2.9.2 pydantic_core 2.23.4 pyDeprecate 0.3.1 pydub 0.25.1 Pygments 2.18.0 pyparsing 3.1.4 python-dateutil 2.9.0.post0 python-multipart 0.0.12 pytorch-lightning 1.5.0 pytz 2024.2 PyYAML 6.0.2 referencing 0.35.1 regex 2024.9.11 requests 2.32.3 requests-oauthlib 2.0.0 rich 13.9.2 rpds-py 0.20.0 rsa 4.9 ruff 0.6.9 safetensors 0.4.5 semantic-version 2.10.0 setuptools 75.1.0 shellingham 1.5.4 six 1.16.0 sniffio 1.3.1 starlette 0.38.6 sympy 1.13.3 tensorboard 2.14.0 tensorboard-data-server 0.7.2 timm 1.0.9 tokenizers 0.12.1 tomlkit 0.12.0 torch 2.4.1+cu118 torchaudio 2.4.1+cu118 torchmetrics 1.4.2 torchvision 0.19.1+cu118 tqdm 4.66.5 transformers 4.19.2 triton 3.0.0 typer 0.12.5 typing_extensions 4.12.2 tzdata 2024.2 uc-micro-py 1.0.3 urllib3 2.2.3 uvicorn 0.31.1 wcwidth 0.2.13 websockets 11.0.3 Werkzeug 3.0.4 wheel 0.44.0 xformers 0.0.28.post1 yarl 1.14.0 zipp 3.20.2