Closed lmoffatt closed 4 months ago
we implement a class for continuous calculation of means and variances with minimal truncation errors
Formula for mean single sample
{ \bar x}_{ n + 1 } ={\bar x_n} +\frac{x-\bar{x_n}}{n+1}
formula for aggregating two samples
{ \bar x} _ { n + m } = \bar x_n+{\frac { m }{n+m}} \cdot {(\bar x_m - \bar x_n)}
formula for aggregating n samples
{ \bar x} _ { \sum n } = \sum \frac {n_i}{\sum_i n_i} \cdot \bar x_{n_i}
formula for actulizing the variance
var _ { n + 1 } = var _ n + ( { \bar x _ n - {\bar x} _ { n + 1 } } ) ^ 2 + \frac{ ( x - {\bar x} _ { n + 1 } ) ^ 2 - var_n} {n}
variance of two samples: (there is an error in this formula)
var_{n+m} = var_n + {\frac {n}{n+m-1} }\cdot \left ( {\bar x}_n-{\bar x}_{n+m} \right)^2 + {\frac {m}{n+m-1} }\cdot \left ( {\bar x}_m-{\bar x}_{n+m} \right)^2 + {\frac {m-1}{n+m-1} }\cdot \left (var_m -var_n \right)
variance of n samples:
var_{\sum n_i} = \sum_i {\frac {n_i}{ \sum n_i -1} }\cdot \left ( {\bar x}_{n_i} - {\bar x}_{\sum n_i} \right)^2 + \sum_i {\frac {n_i-1}{\sum n_i-1} }\cdot var_{n_i}
we implement a class for continuous calculation of means and variances with minimal truncation errors
Formula for mean single sample
formula for aggregating two samples
formula for aggregating n samples
formula for actulizing the variance
variance of two samples: (there is an error in this formula)
variance of n samples: