Closed lmoffatt closed 3 months ago
vE_i \approx \frac {1}{4} \cdot \Delta \beta_i^2 \cdot (vL_i +vL_{i+1})
where vL is the variance of the logLikelihood
now the derivative is
\frac{\partial vE_i}{\partial \beta_{i}} \approx - \frac {1}{2} \cdot \Delta \beta_i \cdot (vL_i +vL_{i+1})
\frac{\partial vE_{i+1}}{\partial \beta_{i+1}} \approx \frac {1}{2} \cdot \Delta \beta_i \cdot (vL_i +vL_{i+1})
now if we want to equilibrate the partial Evidences, we want to minimize the difference between succesive partial Evidences:
\Delta vE_i \equiv vE_{i+1} - vE_{i}
we want to bring $\Delta vE$ to zero. Using a first order Taylor
\Delta vE (\beta) = \Delta vE (\beta^0) + (\beta- \beta^0) \cdot \frac {\partial \Delta vE}{\partial \beta}
Then equating to zero we obtain $\beta$
\beta = \beta^0 - \frac {\Delta vE (\beta^0)}{\frac {\partial \Delta vE}{\partial \beta}}
the derivative of $\Delta vE$ is
\frac {\partial \Delta vE_i}{\partial \beta_{i+1}} \approx \frac {1}{2} \cdot
\left (\Delta \beta_{i+1} \cdot (vL_{i+1} +vL_{i+2}) +
\Delta \beta_{i} \cdot (vL_{i} +vL_{i+1})
\right)
we can also express the variance in terms of $\Delta L$
\frac {\partial \Delta vE_i}{\partial \beta_{i+1}} \approx \frac {1}{2} \cdot
\left (
\Delta L_{i+1}
+
\Delta L_{i}
\right)
we can also estimate the variance of the evidence in terms of logL instead of variance of logL:
vL_i = \frac {\partial L_i}{\partial \beta_i} \approx \frac {1}{2} \cdot \left (\frac {\Delta L_{i-1}}{\Delta \beta_{i-1}} +\frac {\Delta L_{i}}{\Delta \beta_i} \right)
vE_i \approx \frac {1}{8} \cdot \left (\frac { \Delta \beta_i}{\Delta \beta_{i-1}} \cdot \Delta L_{i-1} + 2 \cdot \Delta L_{i} +\frac { \Delta \beta_i}{\Delta \beta_{i+1}} \cdot \Delta L_{i+1} \right) \cdot \Delta \beta_i
\frac{\partial vL_i}{\partial \beta_i} \approx \frac {1}{2} \cdot
\left (vL_{i} \cdot (
\frac {1}{\Delta \beta_{i-1}} -\frac {1}{\Delta \beta_i} )
-\frac {\Delta L_{i-1}}{\Delta \beta_{i-1}^2} +\frac {\Delta L_{i}}{\Delta \beta_i^2}
\right)
vL_i\approx \frac {1}{2} \cdot \left (\frac {\Delta L_{i-1}}{\Delta \beta_{i-1}} +\frac {\Delta L_{i}}{\Delta \beta_i} \right)
\frac{\partial vL_i}{\partial \beta_i} \approx \frac {1}{2} \cdot
\left (vL_{i} \cdot (
\frac {1}{\Delta \beta_{i-1}} -\frac {1}{\Delta \beta_i} )
-\frac {\Delta L_{i-1}}{\Delta \beta_{i-1}^2} +\frac {\Delta L_{i}}{\Delta \beta_i^2}
\right)
\frac{\partial vL_i}{\partial \beta_i} \approx \frac {1}{2} \cdot
\left (
\frac {1}{2} \cdot \left (\frac {\Delta L_{i-1}}{\Delta \beta_{i-1}} +\frac {\Delta L_{i}}{\Delta \beta_i} \right) \cdot (
\frac {1}{\Delta \beta_{i-1}} -\frac {1}{\Delta \beta_i} )
-\frac {\Delta L_{i-1}}{\Delta \beta_{i-1}^2} +\frac {\Delta L_{i}}{\Delta \beta_i^2}
\right)
\frac{\partial vL_i}{\partial \beta_i} \approx \frac {1}{4} \cdot
\frac {\Delta L_{i}-\Delta L_{i-1}}{\Delta \beta_{i-1} \cdot \Delta \beta_{i}}
The problem with this approach is that it is much slower than using Acceptance or synthetic Acceptance methods.
First lets find out the relationship between the variance of the partial Evidence and the betas:
first lets find an approximation for the contribution to the evidence between $\beta{i+1}$ and $\beta{i}$
where L is the logLikelihood