locuslab / optnet

OptNet: Differentiable Optimization as a Layer in Neural Networks
Apache License 2.0
511 stars 75 forks source link

how to run the cpu version #2

Closed gaopeng-eugene closed 7 years ago

gaopeng-eugene commented 7 years ago

/usr/local/lib/python3.6/site-packages/IPython/core/ultratb.py(1268)call() -> self.handler((etype, evalue, etb)) (Pdb)

AssertionError Traceback (most recent call last) /Users/gaopeng/Desktop/tensorflow/project/optnet/denoising/main.py in () 229 230 if name=='main': --> 231 main() global main = <function main at 0x114ba7510>

/Users/gaopeng/Desktop/tensorflow/project/optnet/denoising/main.py in main() 109 elif args.model == 'optnet': 110 if args.learnD: --> 111 model = models.OptNet_LearnD(nFeatures, args) model = undefined global models.OptNet_LearnD = <class 'models.OptNet_LearnD'> nFeatures = 100 args = Namespace(Dpenalty=0.01, batchSz=150, cuda=False, eps=0.0001, learnD=True, model='optnet', nEpoch=50, no_cuda=False, save='work/optnet.eps=0.0001.learnD.0.01', testBatchSz=100, testPct=0.1, tvInit=False) 112 else: 113 model = models.OptNet(nFeatures, args)

/Users/gaopeng/Desktop/tensorflow/project/optnet/denoising/models.py in init(self=OptNet_LearnD ( ), nFeatures=100, args=Namespace(Dpenalty=0.01, batchSz=150, cuda=False....01', testBatchSz=100, testPct=0.1, tvInit=False)) 113 114 # self.fc1 = nn.Linear(nFeatures, nHidden) --> 115 self.M = Variable(torch.tril(torch.ones(nHidden, nHidden)).cuda()) self.M = undefined global Variable = <class 'torch.autograd.variable.Variable'> global torch.tril = global torch.ones = nHidden = 199 nHidden.cuda = undefined 116 117 Q = 1e-8*torch.eye(nHidden)

/usr/local/lib/python3.6/site-packages/torch/_utils.py in _cuda(self= 1 0 0 ... 0 0 0 1... 1 1 [torch.FloatTensor of size 199x199] , device=-1, async=False) 63 else: 64 new_type = getattr(torch.cuda, self.class.name) ---> 65 return newtype(self.size()).copy(self, async) newtype = <class 'torch.cuda.FloatTensor'> self.size.copy = undefined self = 1 0 0 ... 0 0 0 1 1 0 ... 0 0 0 1 1 1 ... 0 0 0 ... ⋱ ...
1 1 1 ... 1 0 0 1 1 1 ... 1 1 0 1 1 1 ... 1 1 1 [torch.FloatTensor of size 199x199]

    async = False
 66 
 67 

/usr/local/lib/python3.6/site-packages/torch/cuda/init.py in new(cls=<class 'torch.cuda.FloatTensor'>, *args=(torch.Size([199, 199]),), *kwargs={}) 275 276 def new(cls, args, **kwargs): --> 277 _lazy_init() global _lazy_init = <function _lazy_init at 0x110ab5378> 278 # We need this method only for lazy init, so we can remove it 279 del _CudaBase.new

/usr/local/lib/python3.6/site-packages/torch/cuda/init.py in _lazy_init() 87 raise RuntimeError( 88 "Cannot re-initialize CUDA in forked subprocess. " + msg) ---> 89 _check_driver() global _check_driver = <function _check_driver at 0x110ab52f0> 90 assert torch._C._cuda_init() 91 assert torch._C._cuda_sparse_init()

/usr/local/lib/python3.6/site-packages/torch/cuda/init.py in _check_driver() 54 def _check_driver(): 55 if not hasattr(torch._C, '_cuda_isDriverSufficient'): ---> 56 raise AssertionError("Torch not compiled with CUDA enabled") global AssertionError = undefined 57 if not torch._C._cuda_isDriverSufficient(): 58 if torch._C._cuda_getDriverVersion() == 0:

AssertionError: Torch not compiled with CUDA enabled

/usr/local/lib/python3.6/site-packages/IPython/core/ultratb.py(1269)call() -> try:

bamos commented 7 years ago

Hi, it's great to hear you've been looking into our OptNet project and that you are exploring the code. I think I forgot to add some checks around some of the cuda() calls, like the one in the trace you sent. Please send in a PR if you add them!

-Brandon.