Open daniel-trejobanos opened 3 years ago
Hi, I wonder if there is a better way to do this:
x_ss = dm[out_path]['sstats.parquet'].load() x_ld = dm[out_path]["lderiv.parquet"].load() x_cs = dm[out_path]["complexity.parquet"].load() x_sp = dm[out_path]["spectrum.parquet"].load() y = dm[out_path]["labels.parquet"].load() features = [x_ss.data, x_ld.data, x_cs.data, x_sp.data] # merge the data frames in a single feature matrix logging.info('Merging features') x = reduce(lambda left,right: pd.merge(left,right,on=['CaseID', 'ChunkID'], how='outer'), features)
i.e. I am merging four sads, but I merge their data frames, thus losing their trees, how would I go around it using sad.transform() ?
sad.transform()
Hi, I wonder if there is a better way to do this:
i.e. I am merging four sads, but I merge their data frames, thus losing their trees, how would I go around it using
sad.transform()
?