lsa1997 / PCAA

Code for "Partial Class Activation Attention for Semantic Segmentation" [CVPR2022]
MIT License
31 stars 1 forks source link

About experimental results of Table.3 in paper #1

Open AlphaNext opened 2 years ago

AlphaNext commented 2 years ago

感谢作者的工作,有个小问题,Table3 在Citycapes的实验结果,使用哪个代码训练的FCN(baseline)、FCN+NL、FCN+OCR、FCN+PCAA等

image

lsa1997 commented 2 years ago

Hi, I have updated these networks and you can check them here.

AlphaNext commented 2 years ago

以下是我针对Tabel3 的复现结果,在+PCAA时,与report的出入比较大,并不是最好的,请作者指点一二。

注: 以下结果都是使用仓库源代码,且训练的机器环境完全一致,结果都取的是日志文件中的best_IU一项

Method Backbone mIoU
FCN(Baseline) ResNet-50 73.50
+ASPP(deeplap-v3) ResNet-50 78.27
+NL(nlnet) ResNet-50 79.07
+OCR(ocrnet) ResNet-50 77.93
+PCAA(caanet) ResNet-50 78.50

ResNet-101 backbone的结果: Method Backbone mIoU
FCN(Baseline) ResNet-101 75.31
+ASPP(deeplap-v3) ResNet-101 79.99
+NL(nlnet) ResNet-101 79.98
+OCR(ocrnet) ResNet-101 79.81
+PCAA(caanet) ResNet-101 78.86
lsa1997 commented 2 years ago

Can you provide your training settings and PyTorch environments? Empirically, performance on Cityscapes val is not very stable. However, the results you provided seem much lower than the average. FYI, the average result of my recent 5 models (caanet, res50) is 79.29 +- 0.14 mIoU.