[X] I have searched the existing issues and checked the recent builds/commits
What happened?
After starting through the webui-user.bat script, open the webpage, enter the prompt, and click generate, the RuntimeError occurs in serval seconds. On the second attempt, the RuntimeError occurs faster than the first attempt and appeared at different statements.
Detailed traceback is pasted below.
Steps to reproduce the problem
start service
input some prompt sentence and click generate
error occurs
What should have happened?
not support amd mobile processors?
gpu vram too low?
system ram too low?
unmatched dependencies?
Version or Commit where the problem happens
version: 1.5.1
What Python version are you running on ?
Python 3.10.x
What platforms do you use to access the UI ?
Windows
What device are you running WebUI on?
AMD iGPUs
Cross attention optimization
Automatic
What browsers do you use to access the UI ?
Google Chrome
Command Line Arguments
No
List of extensions
No
Console logs
venv "D:\Codes\Py\stable-diffusion-webui-directml\venv\Scripts\Python.exe"
fatal: No names found, cannot describe anything.
Python 3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)]
Version: 1.5.1
Commit hash: b180d1df30125ed606f94a779536f2dfb8aca74a
Launching Web UI with arguments:
no module 'xformers'. Processing without...
no module 'xformers'. Processing without...
No module 'xformers'. Proceeding without it.
Loading weights [ad2a33c361] from D:\Codes\Py\stable-diffusion-webui-directml\models\Stable-diffusion\v2-1_768-ema-pruned.ckpt
Running on local URL: http://127.0.0.1:7860
To create a public link, set `share=True` in `launch()`.
Startup time: 10.2s (launcher: 0.6s, import torch: 3.8s, import gradio: 1.1s, setup paths: 0.8s, other imports: 2.0s, load scripts: 1.1s, create ui: 0.5s, gradio launch: 0.1s).
Creating model from config: D:\Codes\Py\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\configs\stable-diffusion\v2-inference-v.yaml
LatentDiffusion: Running in v-prediction mode
DiffusionWrapper has 865.91 M params.
Applying attention optimization: InvokeAI... done.
Model loaded in 18.2s (load weights from disk: 5.0s, find config: 2.0s, create model: 0.7s, apply weights to model: 0.8s, apply half(): 1.1s, move model to device: 8.2s, calculate empty prompt: 0.3s).
5%|████▏ | 1/20 [00:09<03:03, 9.66s/it]
*** Error completing request | 0/20 [00:00<?, ?it/s]
*** Arguments: ('task(a4igjg8ut0s9ynz)', 'flowers with smily faces', '', [], 20, 0, False, False, 1, 1, 7, -1.0, -1.0, 0, 0, 0, False, 512, 512, False, 0.7, 2, 'Latent', 0, 0, 0, 0, '', '', [], <gradio.routes.Request object at 0x000001F031023640>, 0, False, False, 'positive', 'comma', 0, False, False, '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, 0) {}
Traceback (most recent call last):
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\call_queue.py", line 58, in f
res = list(func(*args, **kwargs))
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\call_queue.py", line 37, in f
res = func(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\txt2img.py", line 69, in txt2img
processed = processing.process_images(p)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\processing.py", line 680, in process_images
res = process_images_inner(p)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\processing.py", line 797, in process_images_inner
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\processing.py", line 1057, in sample
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\sd_samplers_kdiffusion.py", line 464, in sample
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\sd_samplers_kdiffusion.py", line 303, in launch_sampling
return func()
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\sd_samplers_kdiffusion.py", line 464, in <lambda>
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
File "D:\Codes\Py\stable-diffusion-webui-directml\venv\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\repositories\k-diffusion\k_diffusion\sampling.py", line 145, in sample_euler_ancestral
denoised = model(x, sigmas[i] * s_in, **extra_args)
File "D:\Codes\Py\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\sd_samplers_kdiffusion.py", line 183, in forward
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
File "D:\Codes\Py\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\repositories\k-diffusion\k_diffusion\external.py", line 167, in forward
return self.get_v(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
File "D:\Codes\Py\stable-diffusion-webui-directml\repositories\k-diffusion\k_diffusion\external.py", line 177, in get_v
return self.inner_model.apply_model(x, t, cond)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\sd_hijack_utils.py", line 17, in <lambda>
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\sd_hijack_utils.py", line 28, in __call__
return self.__orig_func(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 858, in apply_model
x_recon = self.model(x_noisy, t, **cond)
File "D:\Codes\Py\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 1335, in forward
out = self.diffusion_model(x, t, context=cc)
File "D:\Codes\Py\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\sd_unet.py", line 91, in UNetModel_forward
return ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui(self, x, timesteps, context, *args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 802, in forward
h = module(h, emb, context)
File "D:\Codes\Py\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py", line 84, in forward
x = layer(x, context)
File "D:\Codes\Py\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py", line 327, in forward
x = self.norm(x)
File "D:\Codes\Py\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\normalization.py", line 273, in forward
return F.group_norm(
File "D:\Codes\Py\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\functional.py", line 2530, in group_norm
return torch.group_norm(input, num_groups, weight, bias, eps, torch.backends.cudnn.enabled)
RuntimeError
---
*** Error completing request
*** Arguments: ('task(caia0fmfx4f71b3)', 'flowers with smily faces', '', [], 20, 0, False, False, 1, 1, 7, 55.0, -1.0, 0, 0, 0, False, 512, 512, False, 0.7, 2, 'Latent', 0, 0, 0, 0, '', '', [], <gradio.routes.Request object at 0x000001F054792830>, 0, False, False, 'positive', 'comma', 0, False, False, '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, 0) {}
Traceback (most recent call last):
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\call_queue.py", line 58, in f
res = list(func(*args, **kwargs))
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\call_queue.py", line 37, in f
res = func(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\txt2img.py", line 69, in txt2img
processed = processing.process_images(p)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\processing.py", line 680, in process_images
res = process_images_inner(p)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\processing.py", line 786, in process_images_inner
p.setup_conds()
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\processing.py", line 1194, in setup_conds
super().setup_conds()
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\processing.py", line 364, in setup_conds
self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\processing.py", line 353, in get_conds_with_caching
cache[1] = function(shared.sd_model, required_prompts, steps)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\prompt_parser.py", line 163, in get_learned_conditioning
conds = model.get_learned_conditioning(texts)
File "D:\Codes\Py\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py", line 669, in get_learned_conditioning
c = self.cond_stage_model(c)
File "D:\Codes\Py\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\sd_hijack_clip.py", line 234, in forward
z = self.process_tokens(tokens, multipliers)
File "D:\Codes\Py\stable-diffusion-webui-directml\modules\sd_hijack_clip.py", line 263, in process_tokens
tokens = torch.asarray(remade_batch_tokens).to(devices.device)
RuntimeError
---
Is there an existing issue for this?
What happened?
After starting through the webui-user.bat script, open the webpage, enter the prompt, and click generate, the RuntimeError occurs in serval seconds. On the second attempt, the RuntimeError occurs faster than the first attempt and appeared at different statements. Detailed traceback is pasted below.
Steps to reproduce the problem
What should have happened?
not support amd mobile processors? gpu vram too low? system ram too low? unmatched dependencies?
Version or Commit where the problem happens
version: 1.5.1
What Python version are you running on ?
Python 3.10.x
What platforms do you use to access the UI ?
Windows
What device are you running WebUI on?
AMD iGPUs
Cross attention optimization
Automatic
What browsers do you use to access the UI ?
Google Chrome
Command Line Arguments
List of extensions
No
Console logs
Additional information
CPU: AMD 6800H RAM: 16GB GPU: iGPU OS: windows11 home Python version: 3.10.6