# run docker
nvidia-docker run -v <path/to/store/checkpoint>:/data --rm -it mlperf-nvidia:minigo
cd minigo
# comment out L331 in dual_net.py before running freeze_graph.
# L331 is: optimizer = hvd.DistributedOptimizer(optimizer)
# Horovod is initialized via train_loop.py and isn't needed for this step.
CUDA_VISIBLE_DEVICES=0 python3 freeze_graph.py --flagfile=ml_perf/flags/19/architecture.flags --model_path=ml_perf/target/target
mv ml_perf/target/target.minigo ml_perf/target/target.minigo.tf
# uncomment L331 in dual_net.py.
# copy dataset to /data that is mapped to <path/to/store/checkpoint> outside of docker.
# Needed because run_and_time.sh uses the following paths to load checkpoint
# CHECKPOINT_DIR="/data/mlperf07"
# TARGET_PATH="/data/target/target.minigo.tf"
cp -a ml_perf/target /data/
cp -a ml_perf/checkpoints/mlperf07 /data/
gsutil
for accessing toGCP Storage
checkpoint.tar.gz
target*
[x] Pre-process dataset in
docker