lucidrains / BS-RoFormer

Implementation of Band Split Roformer, SOTA Attention network for music source separation out of ByteDance AI Labs
MIT License
433 stars 16 forks source link

Feature request: decouple the loss function of the forward function #22

Open dorpxam opened 1 year ago

dorpxam commented 1 year ago

In the current implementation, the forward() method is generic for train or eval mode. In some case, we need to have not only the loss but the prediction on output that allow to compute extra features like the SDR metric during the validation step.

Because the loss function code is common for BSRoformer and MelBandRoformer classes, maybe that can be better create a new class like MultiResLoss for a maximum of flexibility:

import torch
import torch.nn.functional as F
from einops import rearrange
from beartype import beartype
from beartype.typing import Tuple

class MultiResLoss():
    @beartype
    def __init__(
        self,
        num_stems,
        stft_n_fft,
        multi_stft_resolution_loss_weight = 1.,
        multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
        multi_stft_hop_size = 147,
        multi_stft_normalized = False
    ):
        self.num_stems = num_stems

        self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
        self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
        self.multi_stft_n_fft = stft_n_fft

        self.multi_stft_kwargs = dict(
            hop_length = multi_stft_hop_size,
            normalized = multi_stft_normalized
        )

    def __call__(
        self, 
        predict, 
        targets, 
        return_loss_breakdown = False
    ):
        if self.num_stems > 1:
            assert targets.ndim == 4 and targets.shape[1] == self.num_stems

        if targets.ndim == 2:
            targets = rearrange(targets, '... t -> ... 1 t')

        targets = targets[..., :predict.shape[-1]] # protect against lost length on istft

        loss = F.l1_loss(predict, targets)

        multi_stft_resolution_loss = 0.

        for window_size in self.multi_stft_resolutions_window_sizes:

            res_stft_kwargs = dict(
                n_fft = max(window_size, self.multi_stft_n_fft),  # not sure what n_fft is across multi resolution stft
                win_length = window_size,
                return_complex = True,
                **self.multi_stft_kwargs,
            )

            predict_Y = torch.stft(rearrange(predict, '... s t -> (... s) t'), **res_stft_kwargs)
            targets_Y = torch.stft(rearrange(targets, '... s t -> (... s) t'), **res_stft_kwargs)

            multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(predict_Y, targets_Y)

        weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight

        total_loss =  loss + weighted_multi_resolution_loss

        if not return_loss_breakdown:
            return total_loss

        return total_loss, (loss, multi_stft_resolution_loss)

In the same spirit, a little refactoring could be to create a new file for the common classes :

- RMSNorm
- FeedForward
- Attention
- Transformer
- BandSplit
- MLP
- MaskEstimator

That can be easier for future change in the code?

turian commented 5 months ago

I agree that separating the loss would be useful, because sometimes you just want to apply forward to get the output

turian commented 5 months ago

And also you have custom losses