import torch
from h_transformer_1d import HTransformer1D
model = HTransformer1D(
num_tokens = 256, # number of tokens
dim = 512, # dimension
depth = 2, # depth
causal = False, # autoregressive or not
max_seq_len = 8192, # maximum sequence length
heads = 8, # heads
dim_head = 64, # dimension per head
block_size = 128 # block size
)
x = torch.randint(0, 256, (1, 8000)) # variable sequence length
mask = torch.ones((1, 8000)).bool() # variable mask length
# network will automatically pad to power of 2, do hierarchical attention, etc
logits = model(x, mask = mask) # (1, 8000, 256)
Gives the following error:
~/miniconda3/lib/python3.7/site-packages/rotary_embedding_torch/rotary_embedding_torch.py in apply_rotary_emb(freqs, t, start_index)
43 assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
44 t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
---> 45 t = (t * freqs.cos()) + (rotate_half(t) * freqs.sin())
46 return torch.cat((t_left, t, t_right), dim = -1)
47
RuntimeError: The size of tensor a (8192) must match the size of tensor b (8000) at non-singleton dimension 1
Executing the example:
Gives the following error: