Closed lujiaying closed 3 years ago
<Monkey, eat, banana>
Setting on May 17
Two datasets
Dataset | #nodes |
#edges |
#taxo_edges |
#non-taxo_edges |
setting |
---|---|---|---|---|---|
WN18RR | 40K, 5K, 5K | 86K, 3K, 3K | 3.7K, 1.2K, 1.3K | 4.9K, 1.7K, 1.7K | close-world, 96.1% test ent in train |
CN-100K | 78K, 1.8K, 1.3K | 100K, 1.2K, 1.2K | 15K, 197, 211 | 85K, 1003, 989 | close-world, 92.8% test ent in train |
WN18RR MRR | H@1 | H@3 | H@10 | CN100K MRR | H@1 | H@3 | H@10 | |
---|---|---|---|---|---|---|---|---|
TransE | .226 | .501 | ||||||
DistMult | .43 | .39 | .44 | .49 | .09 | .05 | .10 | . 17 |
ConvE | .43 | .40 | .44 | .52 | .21 | .14 | .23 | .34 |
ComplEx | .44 | .41 | .46 | .51 | .11 | .07 | .12 | .19 |
RotateE | .476 | .428 | .492 | .571 | ||||
HAKE | .497 | .452 | .516 | .582 | ||||
Most-Freq | .026 | .015 | .025 | .045 | .073 | .035 | .060 | .144 |
Hard-Taxo | .072 | .033 | .060 | .147 | ||||
CBR | .43 | .39 | .46 | .51 | ||||
Prob-CBR | .48 | .43 | .49 | .57 | ||||
Taxo-CBR |
WN18RR from HAKE CN-100K from Commonsense Knowledge Base Completion with Structural and Semantic Context
Commonsense Knowledge Base Completion Similar Fact Count, Argument Similarity, Max Similarity: these train binary classification models.
Most-Frequent: <h, r, ?> then ? is the most freq tail ent for r.
Hard-Taxonomy
<h, IsA, ?>
: find similar h' (score func), then <h', IsA, t'> gives t' scores to rank (propagate from h).<?, IsA, t>
: h similar to existing <h', IsA, t>.<h, r, ?>
: suggested by sibling and similar items<?, r, t>
: suggested by sibling and similar items Case Based Reasoning A Simple Approach to Case-Based Reasoning in Knowledge Bases, https://openreview.net/forum?id=AEY9tRqlU7
Replace the k-nearest search into taxonomy-guided similar entity search.
to predict:
06845599 (__trade_name) _member_of_domain_usage 03754979(__metharbital)
similar ents: {'06333653' (name): 1, '06338908' (designation): 1, '06336537' (street_name): 1, '06338278' (pseudonym): 1, '06334512' (fictitious_name): 1, '06343520' (title): 1, '06337307' (__given_name): 1, '06335532' (__filename): 1}
retrieved fact:
{('06336537'(__street_name), '_member_of_domain_usage', '02837416' (__thunder, street names for heroin)): 1.0})
triple to predict: dog CapableOf bark ranked cor_hs: [('dog', 'CapableOf', 'live'), ('dog', 'CapableOf', 'have sex'), ('dog', 'CapableOf', 'lie down'), ('dog', 'CapableOf', 'sleep'), ('dog', 'CapableOf', 'hear'), ('dog', 'CapableOf', 'relaxation'), ('dog', 'CapableOf', 'have fun'), ('dog', 'CapableOf', 'move'), ('dog', 'CapableOf', 'relax'), ('dog', 'CapableOf', 'listen to music'), ('dog', 'CapableOf', 'shelter'), ('dog', 'CapableOf', 'object'), ('dog', 'CapableOf', 'build'), ('dog', 'CapableOf', 'poop'), ('dog', 'CapableOf', 'live in')] MRR=0.002 hits@1,3,10 =0.000, 0.000, 0.000 triple to predict: pen UsedFor write ranked cor_hs: [('pen', 'UsedFor', 'learn'), ('pen', 'UsedFor', 'live in'), ('pen', 'UsedFor', 'education'), ('pen', 'UsedFor', 'learn thing'), ('pen', 'UsedFor', 'study'), ('pen', 'UsedFor', 'shelter'), ('pen', 'UsedFor', 'store thing'), ('pen', 'UsedFor', 'teach student'), ('pen', 'UsedFor', 'teach'), ('pen', 'UsedFor', 'listen to teacher'), ('pen', 'UsedFor', 'store object'), ('pen', 'UsedFor', 'child'), ('pen', 'UsedFor', 'play game'), ('pen', 'UsedFor', 'teach child'), ('pen', 'UsedFor', 'make friend')] MRR=0.011 hits@1,3,10 =0.000, 0.000, 0.000
~- [ ] DBLP~ ~- [ ] PubMed~ ~- [ ] Wiki-subset~