Open HCTsai opened 1 year ago
In trainer.py, ignore the last token is not suitable for all situations.
def tokenize_sample(self, item, max_seq_length, add_eos_token=True): assert self.tokenizer is not None result = self.tokenizer( item["text"], truncation=True, max_length=max_seq_length, padding="max_length", ) # ignore the last token [:-1] result = { "input_ids": result["input_ids"][:-1], "attention_mask": result["attention_mask"][:-1], }
https://github.com/lxe/simple-llm-finetuner/blob/3c3ae84e5dee5a1d40f17e5567938dfdffce9d16/trainer.py#LL150C9-L153C10
If the user of web UI using custom dataset. they will not know the last token of training data is truncated. And the prediction results go unexpected.
In trainer.py, ignore the last token is not suitable for all situations.
https://github.com/lxe/simple-llm-finetuner/blob/3c3ae84e5dee5a1d40f17e5567938dfdffce9d16/trainer.py#LL150C9-L153C10
If the user of web UI using custom dataset. they will not know the last token of training data is truncated. And the prediction results go unexpected.