makefile / frcnn

Faster R-CNN / R-FCN :bulb: C++ version based on Caffe
Other
184 stars 75 forks source link

run yolov3-tiny completed! #7

Open a-little-cat opened 6 years ago

a-little-cat commented 6 years ago

I find the reason why yolov3-tiny model failed with current code.

There are two questions need to be solved.

The changed code does not support caffe model... Unless they retrain the models with the new pooling_layer.

I thought there has a Elegant solution. Adding a new parameter in pooling_layer, or adding a new layer named pooling_yolo.

But this is beyond the scope of my work. Middle-aged people have no right to spend time to satisfy elegance.

Thanks for your project, it helps me!

makefile commented 6 years ago

Thanks for your question and corresponding solution. I am not familiar with the tiny-yolo model, can you explain the problem more concisely? By the way, the sentence Middle-aged people have no right to spend time to satisfy elegance. seems to be reasonable.

a-little-cat commented 6 years ago

我要放弃英文了....

总体说明

caffe和darknet在pooling层时候的reshape逻辑不同.

caffe的逻辑是kernel在输入blob进行滑动,kernel的右(下)边界和输入blob右(下)边界重合即结束.

darknet的逻辑是kernel在输入blob进行滑动,kernel的左(上)边界和输入blob右(下)边界重合即结束.

这个差异直接影响pooling层输出的宽高,所以在部分情况下darknet和caffe的pooling层的输出blob参数会有细微的不同.

yolov3没有使用pooling,所以正常运行.

具体位置

darknet的pooling,reshape操作在maxpool_layer.c/make_maxpool_layer()函数内/30,31行.

    l.out_w = (w + 2*padding)/stride;
    l.out_h = (h + 2*padding)/stride;

caffe的pooling,shape操作在pooling_layer.cpp/reshape()函数/95,96,97,98行.

  if (ceil_mode) {
    pooled_height_ = static_cast<int>(ceil(static_cast<float>(
        height_ + 2 * pad_h_ - kernel_h_) / stride_h_)) + 1;
    pooled_width_ = static_cast<int>(ceil(static_cast<float>(
        width_ + 2 * pad_w_ - kernel_w_) / stride_w_)) + 1;
}

临时而丑的解决方案

直接在caffe的pooling_layer.cpp修改reshape,将caffe的pooling修改为darknet的实现.从此不再兼容caffe模型.

if (ceil_mode) {
    // pooled_height_ = static_cast<int>(ceil(static_cast<float>(
    //     height_ + 2 * pad_h_ - kernel_h_) / stride_h_)) + 1;
    // pooled_width_ = static_cast<int>(ceil(static_cast<float>(
    //     width_ + 2 * pad_w_ - kernel_w_) / stride_w_)) + 1;
      pooled_height_ = static_cast<int>((height_+2*pad_h_) / stride_h_);
      pooled_width_ = static_cast<int>((width_+2*pad_h_) / stride_w_);
  } else {

(优雅的实现,添加一个pooling_yolo层...)

Ps,修改完pooling后模型可以正常转换,但是demo_yolov3.cpp中的第72行会check失败.我注释掉了它,程序陷入了时而正常,时而内存越界死掉的情况,正在追查...

CHECK_EQ(net->num_outputs(), 3) << "Network should have exactly three outputs.";  
makefile commented 6 years ago

看了下darknet的pooling层代码, 的确如你所说, 在yolo v3之前的代码中的pooling层逻辑与caffe的不同. 但是最新的darknet代码中的pooling层又修改成与caffe一致的了. 添加一个pooling_yolo_v2名字的层是比较好,不容易混淆. 至于内存越界的问题是很难查, 哈哈..