File "/opt/venv/lib/python3.10/site-packages/marie/models/unilm/trocr/trocr_models.py", line 169, in build_model
roberta = torch.hub.load('pytorch/fairseq:main', 'roberta.large')
Full stack :
⠏ Waiting extract_t... ━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━ 1/2 0:00:31ERROR extract_t/rep-2@45 <HTTPError 403: 'rate limit exceeded'> during 'WorkerRuntime' initialization
add "--quiet-error" to suppress the exception details
Traceback (most recent call last):
File "/opt/venv/lib/python3.10/site-packages/marie/serve/executors/run.py", line 141, in run
runtime = AsyncNewLoopRuntime(
File "/opt/venv/lib/python3.10/site-packages/marie/serve/runtimes/asyncio.py", line 82, in __init__
self._loop.run_until_complete(self.async_setup())
File "/usr/lib/python3.10/asyncio/base_events.py", line 646, in run_until_complete
return future.result()
File "/opt/venv/lib/python3.10/site-packages/marie/serve/runtimes/asyncio.py", line 276, in async_setup
self.server = self._get_server()
File "/opt/venv/lib/python3.10/site-packages/marie/serve/runtimes/asyncio.py", line 185, in _get_server
return GRPCServer(
File "/opt/venv/lib/python3.10/site-packages/marie/serve/runtimes/servers/grpc.py", line 31, in __init__
super().__init__(**kwargs)
File "/opt/venv/lib/python3.10/site-packages/marie/serve/runtimes/servers/__init__.py", line 56, in __init__
self._request_handler = req_handler or self._get_request_handler()
File "/opt/venv/lib/python3.10/site-packages/marie/serve/runtimes/servers/__init__.py", line 81, in _get_request_handler
return self.req_handler_cls(
File "/opt/venv/lib/python3.10/site-packages/marie/serve/runtimes/worker/request_handling.py", line 136, in __init__
self._load_executor(
File "/opt/venv/lib/python3.10/site-packages/marie/serve/runtimes/worker/request_handling.py", line 340, in _load_executor
self._executor: BaseExecutor = BaseExecutor.load_config(
File "/opt/venv/lib/python3.10/site-packages/marie/jaml/__init__.py", line 792, in load_config
obj = JAML.load(tag_yml, substitute=False, runtime_args=runtime_args)
File "/opt/venv/lib/python3.10/site-packages/marie/jaml/__init__.py", line 174, in load
r = yaml.load(stream, Loader=get_jina_loader_with_runtime(runtime_args))
File "/opt/venv/lib/python3.10/site-packages/yaml/__init__.py", line 81, in load
return loader.get_single_data()
File "/opt/venv/lib/python3.10/site-packages/yaml/constructor.py", line 51, in get_single_data
return self.construct_document(node)
File "/opt/venv/lib/python3.10/site-packages/yaml/constructor.py", line 55, in construct_document
data = self.construct_object(node)
File "/opt/venv/lib/python3.10/site-packages/yaml/constructor.py", line 100, in construct_object
data = constructor(self, node)
File "/opt/venv/lib/python3.10/site-packages/marie/jaml/__init__.py", line 582, in _from_yaml
return get_parser(cls, version=data.get('version', None)).parse(
File "/opt/venv/lib/python3.10/site-packages/marie/jaml/parsers/executor/legacy.py", line 46, in parse
obj = cls(
File "/opt/venv/lib/python3.10/site-packages/marie/serve/executors/decorators.py", line 58, in arg_wrapper
f = func(self, *args, **kwargs)
File "/opt/venv/lib/python3.10/site-packages/marie/serve/helper.py", line 74, in arg_wrapper
f = func(self, *args, **kwargs)
File "/opt/venv/lib/python3.10/site-packages/marie/executor/text/text_extraction_executor.py", line 35, in __init__
self.pipeline = ExtractPipeline(cuda=use_cuda)
File "/opt/venv/lib/python3.10/site-packages/marie/ocr/extract_pipeline.py", line 121, in __init__
self.ocr_engine = DefaultOcrEngine(cuda=use_cuda)
File "/opt/venv/lib/python3.10/site-packages/marie/ocr/default_ocr_engine.py", line 61, in __init__
self.icr_processor = TrOcrIcrProcessor(work_dir=work_dir_icr, cuda=has_cuda)
File "/opt/venv/lib/python3.10/site-packages/marie/document/trocr_icr_processor.py", line 228, in __init__
) = init(model_path, beam, device)
File "/opt/venv/lib/python3.10/site-packages/marie/document/trocr_icr_processor.py", line 57, in init
model, cfg, inference_task = fairseq.checkpoint_utils.load_model_ensemble_and_task(
File "/opt/venv/lib/python3.10/site-packages/fairseq/checkpoint_utils.py", line 484, in load_model_ensemble_and_task
model = task.build_model(cfg.model, from_checkpoint=True)
File "/opt/venv/lib/python3.10/site-packages/fairseq/tasks/fairseq_task.py", line 691, in build_model
model = models.build_model(args, self, from_checkpoint)
File "/opt/venv/lib/python3.10/site-packages/fairseq/models/__init__.py", line 106, in build_model
return model.build_model(cfg, task)
File "/opt/venv/lib/python3.10/site-packages/marie/models/unilm/trocr/trocr_models.py", line 169, in build_model
roberta = torch.hub.load('pytorch/fairseq:main', 'roberta.large')
File "/opt/venv/lib/python3.10/site-packages/torch/hub.py", line 562, in load
repo_or_dir = _get_cache_or_reload(repo_or_dir, force_reload, trust_repo, "load",
File "/opt/venv/lib/python3.10/site-packages/torch/hub.py", line 229, in _get_cache_or_reload
_validate_not_a_forked_repo(repo_owner, repo_name, ref)
File "/opt/venv/lib/python3.10/site-packages/torch/hub.py", line 188, in _validate_not_a_forked_repo
response = json.loads(_read_url(Request(url, headers=headers)))
File "/opt/venv/lib/python3.10/site-packages/torch/hub.py", line 171, in _read_url
with urlopen(url) as r:
File "/usr/lib/python3.10/urllib/request.py", line 216, in urlopen
return opener.open(url, data, timeout)
File "/usr/lib/python3.10/urllib/request.py", line 525, in open
response = meth(req, response)
File "/usr/lib/python3.10/urllib/request.py", line 634, in http_response
response = self.parent.error(
File "/usr/lib/python3.10/urllib/request.py", line 563, in error
return self._call_chain(*args)
File "/usr/lib/python3.10/urllib/request.py", line 496, in _call_chain
result = func(*args)
File "/usr/lib/python3.10/urllib/request.py", line 643, in http_error_default
raise HTTPError(req.full_url, code, msg, hdrs, fp)
urllib.error.HTTPError: HTTP Error 403: rate limit exceeded
INFO marie@47 Box processor [dit, cuda=True]
When launching a cluster of GPU servers we can exceed number of requests sent to torch.hub and get following error:
HTTPError 403: 'rate limit exceeded'
This is possibly related to HTTP Error 403: rate limit exceeded when loading model #4156
The offending section:
Full stack :