Open shirishr opened 7 years ago
Hi, @shirishr, the first four are the mean and variance of latent(f) and predictive variables(y). lp
is the log predictive probability.
Furthermore, there are a few other properties you can get from the model
object:
model.nlZ # negative log marginal likelihood
model.dnlZ.cov # direvatives of negative log marginal likelihood
model.dnlZ.lik
model.dnlZ.mean
model.posterior.sW # posterior structure
model.posterior.alpha
model.posterior.L
model.covfunc.hyp
model.meanfunc.hyp
model.likfunc.hyp
model.fm # latent mean
model.fs2 # latent variance
model.ym # predictive mean
model.ys2 # predictive variance
model.lp # log predictive probability
You may want to look at our very detailed documentation and tutorials: http://www-ai.cs.uni-dortmund.de/weblab/static/api_docs/pyGPs/index.html
How do I interpret result of model.predict(z, ys=np.ones((n,1)))? What are (ymu, ys2, fmu, fs2, lp)