Open guanqun-yang opened 3 years ago
Hi @guanqun-yang, thanks for reporting this issue. Could you provide a full stack trace, pointing to the python line the error arises? Also, with your installation setup are you able to run the scripts for tasks like shakespeare transfer?
@martiansideofthemoon Thank you for your prompt reply!
I reconfigured the whole environment using the virtualenv
(rather than conda
in the question). I think the style transfer on Shakesphere is runnable (it is still running though), and this means the installation should be correct. But I kept getting similar errors as I got yesterday.
Here are the full error traces
Using cache found in /home/yang/.cache/torch/hub/pytorch_fairseq_master
fatal: not a git repository (or any parent up to mount point /)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
running build_ext
cythoning fairseq/data/data_utils_fast.pyx to fairseq/data/data_utils_fast.cpp
cythoning fairseq/data/token_block_utils_fast.pyx to fairseq/data/token_block_utils_fast.cpp
building 'fairseq.libbleu' extension
creating /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8
creating /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq
creating /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib
creating /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libbleu
Emitting ninja build file /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/build.ninja...
Compiling objects...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
[1/2] c++ -MMD -MF /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libbleu/module.o.d -pthread -B /home/yang/Essential/anaconda3/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/home/yang/Essential/anaconda3/include/python3.8 -c -c /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/clib/libbleu/module.cpp -o /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libbleu/module.o -std=c++11 -O3 -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=libbleu -D_GLIBCXX_USE_CXX11_ABI=0
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
[2/2] c++ -MMD -MF /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libbleu/libbleu.o.d -pthread -B /home/yang/Essential/anaconda3/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/home/yang/Essential/anaconda3/include/python3.8 -c -c /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/clib/libbleu/libbleu.cpp -o /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libbleu/libbleu.o -std=c++11 -O3 -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=libbleu -D_GLIBCXX_USE_CXX11_ABI=0
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
creating build/lib.linux-x86_64-3.8
creating build/lib.linux-x86_64-3.8/fairseq
g++ -pthread -shared -B /home/yang/Essential/anaconda3/compiler_compat -L/home/yang/Essential/anaconda3/lib -Wl,-rpath=/home/yang/Essential/anaconda3/lib -Wl,--no-as-needed -Wl,--sysroot=/ /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libbleu/libbleu.o /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libbleu/module.o -o build/lib.linux-x86_64-3.8/fairseq/libbleu.cpython-38-x86_64-linux-gnu.so
building 'fairseq.data.data_utils_fast' extension
creating /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/data
Emitting ninja build file /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/build.ninja...
Compiling objects...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
[1/1] c++ -MMD -MF /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/data/data_utils_fast.o.d -pthread -B /home/yang/Essential/anaconda3/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include -I/home/yang/Essential/anaconda3/include/python3.8 -c -c /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/data/data_utils_fast.cpp -o /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/data/data_utils_fast.o -std=c++11 -O3 -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=data_utils_fast -D_GLIBCXX_USE_CXX11_ABI=0
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
In file included from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include/numpy/ndarraytypes.h:1822:0,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include/numpy/ndarrayobject.h:12,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include/numpy/arrayobject.h:4,
from /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/data/data_utils_fast.cpp:624:
/home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]
#warning "Using deprecated NumPy API, disable it with " \
^~~~~~~
creating build/lib.linux-x86_64-3.8/fairseq/data
g++ -pthread -shared -B /home/yang/Essential/anaconda3/compiler_compat -L/home/yang/Essential/anaconda3/lib -Wl,-rpath=/home/yang/Essential/anaconda3/lib -Wl,--no-as-needed -Wl,--sysroot=/ /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/data/data_utils_fast.o -o build/lib.linux-x86_64-3.8/fairseq/data/data_utils_fast.cpython-38-x86_64-linux-gnu.so
building 'fairseq.data.token_block_utils_fast' extension
Emitting ninja build file /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/build.ninja...
Compiling objects...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
[1/1] c++ -MMD -MF /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/data/token_block_utils_fast.o.d -pthread -B /home/yang/Essential/anaconda3/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include -I/home/yang/Essential/anaconda3/include/python3.8 -c -c /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/data/token_block_utils_fast.cpp -o /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/data/token_block_utils_fast.o -std=c++11 -O3 -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=token_block_utils_fast -D_GLIBCXX_USE_CXX11_ABI=0
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
In file included from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include/numpy/ndarraytypes.h:1822:0,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include/numpy/ndarrayobject.h:12,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include/numpy/arrayobject.h:4,
from /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/data/token_block_utils_fast.cpp:625:
/home/yang/Essential/anaconda3/lib/python3.8/site-packages/numpy/core/include/numpy/npy_1_7_deprecated_api.h:17:2: warning: #warning "Using deprecated NumPy API, disable it with " "#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION" [-Wcpp]
#warning "Using deprecated NumPy API, disable it with " \
^~~~~~~
/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/data/token_block_utils_fast.cpp: In function ‘PyArrayObject* __pyx_f_7fairseq_4data_22token_block_utils_fast__get_slice_indices_fast(PyArrayObject*, PyObject*, int, int, int)’:
/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/data/token_block_utils_fast.cpp:3290:36: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
__pyx_t_4 = ((__pyx_v_sz_idx < __pyx_t_10) != 0);
~~~~~~~~~~~~~~~^~~~~~~~~~~~
/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/data/token_block_utils_fast.cpp:3485:36: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
__pyx_t_3 = ((__pyx_v_sz_idx < __pyx_t_10) != 0);
~~~~~~~~~~~~~~~^~~~~~~~~~~~
g++ -pthread -shared -B /home/yang/Essential/anaconda3/compiler_compat -L/home/yang/Essential/anaconda3/lib -Wl,-rpath=/home/yang/Essential/anaconda3/lib -Wl,--no-as-needed -Wl,--sysroot=/ /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/data/token_block_utils_fast.o -o build/lib.linux-x86_64-3.8/fairseq/data/token_block_utils_fast.cpython-38-x86_64-linux-gnu.so
building 'fairseq.libbase' extension
creating /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libbase
Emitting ninja build file /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/build.ninja...
Compiling objects...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
[1/1] c++ -MMD -MF /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libbase/balanced_assignment.o.d -pthread -B /home/yang/Essential/anaconda3/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/TH -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/THC -I/home/yang/Essential/anaconda3/include/python3.8 -c -c /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/clib/libbase/balanced_assignment.cpp -o /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libbase/balanced_assignment.o -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=libbase -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++14
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
In file included from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/ATen/Parallel.h:149:0,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/utils.h:3,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/nn/cloneable.h:5,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/nn.h:3,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/all.h:12,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/extension.h:4,
from /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/clib/libbase/balanced_assignment.cpp:16:
/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/ATen/ParallelOpenMP.h:84:0: warning: ignoring #pragma omp parallel [-Wunknown-pragmas]
#pragma omp parallel for if ((end - begin) >= grain_size)
g++ -pthread -shared -B /home/yang/Essential/anaconda3/compiler_compat -L/home/yang/Essential/anaconda3/lib -Wl,-rpath=/home/yang/Essential/anaconda3/lib -Wl,--no-as-needed -Wl,--sysroot=/ /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libbase/balanced_assignment.o -L/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-3.8/fairseq/libbase.cpython-38-x86_64-linux-gnu.so
building 'fairseq.libnat' extension
creating /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libnat
Emitting ninja build file /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/build.ninja...
Compiling objects...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
[1/1] c++ -MMD -MF /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libnat/edit_dist.o.d -pthread -B /home/yang/Essential/anaconda3/compiler_compat -Wl,--sysroot=/ -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/csrc/api/include -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/TH -I/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/THC -I/home/yang/Essential/anaconda3/include/python3.8 -c -c /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/clib/libnat/edit_dist.cpp -o /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libnat/edit_dist.o -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=libnat -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++14
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
In file included from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/ATen/Parallel.h:149:0,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/utils.h:3,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/nn/cloneable.h:5,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/nn.h:3,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/all.h:12,
from /home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/torch/csrc/api/include/torch/torch.h:3,
from /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/clib/libnat/edit_dist.cpp:11:
/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/ATen/ParallelOpenMP.h:84:0: warning: ignoring #pragma omp parallel [-Wunknown-pragmas]
#pragma omp parallel for if ((end - begin) >= grain_size)
In file included from /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/clib/libnat/edit_dist.cpp:9:0:
/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/pybind11/detail/common.h: In function ‘void pybind11::pybind11_fail(const string&)’:
/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/pybind11/detail/common.h:680:83: warning: inline declaration of ‘void pybind11::pybind11_fail(const string&)’ follows declaration with attribute noinline [-Wattributes]
[[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const std::string &reason) { throw std::runtime_error(reason); }
^
/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/pybind11/detail/common.h:679:44: note: previous definition of ‘void pybind11::pybind11_fail(const char*)’ was here
[[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const char *reason) { throw std::runtime_error(reason); }
^~~~~~~~~~~~~
/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/pybind11/detail/common.h:680:83: warning: inline declaration of ‘void pybind11::pybind11_fail(const string&)’ follows declaration with attribute noinline [-Wattributes]
[[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const std::string &reason) { throw std::runtime_error(reason); }
^
/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/include/pybind11/detail/common.h:679:44: note: previous definition of ‘void pybind11::pybind11_fail(const char*)’ was here
[[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const char *reason) { throw std::runtime_error(reason); }
^~~~~~~~~~~~~
g++ -pthread -shared -B /home/yang/Essential/anaconda3/compiler_compat -L/home/yang/Essential/anaconda3/lib -Wl,-rpath=/home/yang/Essential/anaconda3/lib -Wl,--no-as-needed -Wl,--sysroot=/ /home/yang/.cache/torch/hub/pytorch_fairseq_master/build/temp.linux-x86_64-3.8/fairseq/clib/libnat/edit_dist.o -L/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/lib -lc10 -ltorch -ltorch_cpu -ltorch_python -o build/lib.linux-x86_64-3.8/fairseq/libnat.cpython-38-x86_64-linux-gnu.so
copying build/lib.linux-x86_64-3.8/fairseq/libbleu.cpython-38-x86_64-linux-gnu.so -> fairseq
copying build/lib.linux-x86_64-3.8/fairseq/data/data_utils_fast.cpython-38-x86_64-linux-gnu.so -> fairseq/data
copying build/lib.linux-x86_64-3.8/fairseq/data/token_block_utils_fast.cpython-38-x86_64-linux-gnu.so -> fairseq/data
copying build/lib.linux-x86_64-3.8/fairseq/libbase.cpython-38-x86_64-linux-gnu.so -> fairseq
copying build/lib.linux-x86_64-3.8/fairseq/libnat.cpython-38-x86_64-linux-gnu.so -> fairseq
/home/yang/Essential/anaconda3/lib/python3.8/site-packages/hydra/experimental/initialize.py:35: UserWarning: hydra.experimental.initialize() is no longer experimental. Use hydra.initialize()
warnings.warn(
Error when composing. Overrides: ['common.no_progress_bar=False', 'common.log_interval=25', "common.log_format='json'", 'common.log_file=null', 'common.tensorboard_logdir=null', 'common.wandb_project=null', 'common.azureml_logging=False', 'common.seed=1', 'common.cpu=False', 'common.tpu=False', 'common.bf16=False', 'common.memory_efficient_bf16=False', 'common.fp16=True', 'common.memory_efficient_fp16=True', 'common.fp16_no_flatten_grads=False', 'common.fp16_init_scale=4', 'common.fp16_scale_window=128', 'common.fp16_scale_tolerance=0.0', 'common.on_cpu_convert_precision=False', 'common.min_loss_scale=0.0001', 'common.threshold_loss_scale=1.0', 'common.amp=False', 'common.amp_batch_retries=2', 'common.amp_init_scale=128', 'common.amp_scale_window=null', 'common.user_dir=null', 'common.empty_cache_freq=0', 'common.all_gather_list_size=16384', 'common.model_parallel_size=1', 'common.quantization_config_path=null', 'common.profile=False', 'common.reset_logging=False', 'common.suppress_crashes=False', 'common.use_plasma_view=False', "common.plasma_path='/tmp/plasma'", 'common_eval.path=null', 'common_eval.post_process=null', 'common_eval.quiet=False', "common_eval.model_overrides='{}'", 'common_eval.results_path=null', 'distributed_training.distributed_world_size=512', 'distributed_training.distributed_num_procs=1', 'distributed_training.distributed_rank=0', "distributed_training.distributed_backend='nccl'", 'distributed_training.distributed_init_method=null', 'distributed_training.distributed_port=19812', 'distributed_training.device_id=0', 'distributed_training.distributed_no_spawn=False', "distributed_training.ddp_backend='c10d'", "distributed_training.ddp_comm_hook='none'", 'distributed_training.bucket_cap_mb=200', 'distributed_training.fix_batches_to_gpus=False', 'distributed_training.find_unused_parameters=True', 'distributed_training.fast_stat_sync=False', 'distributed_training.heartbeat_timeout=-1', 'distributed_training.broadcast_buffers=False', 'distributed_training.slowmo_momentum=null', "distributed_training.slowmo_algorithm='LocalSGD'", 'distributed_training.localsgd_frequency=3', 'distributed_training.nprocs_per_node=1', 'distributed_training.pipeline_model_parallel=False', 'distributed_training.pipeline_balance=null', 'distributed_training.pipeline_devices=null', 'distributed_training.pipeline_chunks=0', 'distributed_training.pipeline_encoder_balance=null', 'distributed_training.pipeline_encoder_devices=null', 'distributed_training.pipeline_decoder_balance=null', 'distributed_training.pipeline_decoder_devices=null', "distributed_training.pipeline_checkpoint='never'", "distributed_training.zero_sharding='none'", 'distributed_training.fp16=True', 'distributed_training.memory_efficient_fp16=True', 'distributed_training.tpu=True', 'distributed_training.no_reshard_after_forward=False', 'distributed_training.fp32_reduce_scatter=False', 'distributed_training.cpu_offload=False', 'distributed_training.use_sharded_state=False', 'dataset.num_workers=2', 'dataset.skip_invalid_size_inputs_valid_test=True', 'dataset.max_tokens=999999', 'dataset.batch_size=null', 'dataset.required_batch_size_multiple=1', 'dataset.required_seq_len_multiple=1', "dataset.dataset_impl='mmap'", 'dataset.data_buffer_size=10', "dataset.train_subset='train'", "dataset.valid_subset='valid'", 'dataset.combine_valid_subsets=null', 'dataset.ignore_unused_valid_subsets=False', 'dataset.validate_interval=1', 'dataset.validate_interval_updates=0', 'dataset.validate_after_updates=0', 'dataset.fixed_validation_seed=null', 'dataset.disable_validation=False', "dataset.max_tokens_valid='${dataset.max_tokens}'", "dataset.batch_size_valid='${dataset.batch_size}'", 'dataset.max_valid_steps=null', 'dataset.curriculum=0', "dataset.gen_subset='test'", 'dataset.num_shards=1', 'dataset.shard_id=0', 'optimization.max_epoch=0', 'optimization.max_update=500000', 'optimization.stop_time_hours=0.0', 'optimization.clip_norm=0.0', 'optimization.sentence_avg=False', 'optimization.update_freq=[1]', 'optimization.lr=[0.0006]', 'optimization.stop_min_lr=-1.0', 'optimization.use_bmuf=False', "checkpoint.save_dir='checkpoints'", "checkpoint.restore_file='checkpoint_last.pt'", 'checkpoint.finetune_from_model=null', 'checkpoint.reset_dataloader=True', 'checkpoint.reset_lr_scheduler=False', 'checkpoint.reset_meters=False', 'checkpoint.reset_optimizer=False', "checkpoint.optimizer_overrides='{}'", 'checkpoint.save_interval=1', 'checkpoint.save_interval_updates=2000', 'checkpoint.keep_interval_updates=-1', 'checkpoint.keep_interval_updates_pattern=-1', 'checkpoint.keep_last_epochs=-1', 'checkpoint.keep_best_checkpoints=-1', 'checkpoint.no_save=False', 'checkpoint.no_epoch_checkpoints=True', 'checkpoint.no_last_checkpoints=False', 'checkpoint.no_save_optimizer_state=False', "checkpoint.best_checkpoint_metric='loss'", 'checkpoint.maximize_best_checkpoint_metric=False', 'checkpoint.patience=-1', "checkpoint.checkpoint_suffix=''", 'checkpoint.checkpoint_shard_count=1', 'checkpoint.load_checkpoint_on_all_dp_ranks=False', 'checkpoint.write_checkpoints_asynchronously=False', "checkpoint.model_parallel_size='${common.model_parallel_size}'", 'bmuf.block_lr=1.0', 'bmuf.block_momentum=0.875', 'bmuf.global_sync_iter=10', 'bmuf.warmup_iterations=500', 'bmuf.use_nbm=False', 'bmuf.average_sync=False', 'bmuf.distributed_world_size=512', 'generation.beam=5', 'generation.nbest=1', 'generation.max_len_a=0.0', 'generation.max_len_b=200', 'generation.min_len=1', 'generation.match_source_len=False', 'generation.unnormalized=False', 'generation.no_early_stop=False', 'generation.no_beamable_mm=False', 'generation.lenpen=1.0', 'generation.unkpen=0.0', 'generation.replace_unk=null', 'generation.sacrebleu=False', 'generation.score_reference=False', 'generation.prefix_size=0', 'generation.no_repeat_ngram_size=0', 'generation.sampling=False', 'generation.sampling_topk=-1', 'generation.sampling_topp=-1.0', 'generation.constraints=null', 'generation.temperature=1.0', 'generation.diverse_beam_groups=-1', 'generation.diverse_beam_strength=0.5', 'generation.diversity_rate=-1.0', 'generation.print_alignment=null', 'generation.print_step=False', 'generation.lm_path=null', 'generation.lm_weight=0.0', 'generation.iter_decode_eos_penalty=0.0', 'generation.iter_decode_max_iter=10', 'generation.iter_decode_force_max_iter=False', 'generation.iter_decode_with_beam=1', 'generation.iter_decode_with_external_reranker=False', 'generation.retain_iter_history=False', 'generation.retain_dropout=False', 'generation.retain_dropout_modules=null', 'generation.decoding_format=null', 'generation.no_seed_provided=False', 'eval_lm.output_word_probs=False', 'eval_lm.output_word_stats=False', 'eval_lm.context_window=0', 'eval_lm.softmax_batch=9223372036854775807', 'interactive.buffer_size=0', "interactive.input='-'", 'task=masked_lm', 'task._name=masked_lm', "task.data='/home/yang/.cache/torch/pytorch_fairseq/37d2bc14cf6332d61ed5abeb579948e6054e46cc724c7d23426382d11a31b2d6.ae5852b4abc6bf762e0b6b30f19e741aa05562471e9eb8f4a6ae261f04f9b350'", "task.sample_break_mode='complete'", 'task.tokens_per_sample=512', 'task.mask_prob=0.15', 'task.leave_unmasked_prob=0.1', 'task.random_token_prob=0.1', 'task.freq_weighted_replacement=False', 'task.mask_whole_words=False', 'task.mask_multiple_length=1', 'task.mask_stdev=0.0', "task.shorten_method='none'", "task.shorten_data_split_list=''", 'task.seed=1', 'criterion=masked_lm', 'criterion._name=masked_lm', 'criterion.tpu=True', 'bpe=gpt2', 'bpe._name=gpt2', "bpe.gpt2_encoder_json='https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'", "bpe.gpt2_vocab_bpe='https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'", 'optimizer=adam', 'optimizer._name=adam', "optimizer.adam_betas='(0.9, 0.98)'", 'optimizer.adam_eps=1e-06', 'optimizer.weight_decay=0.01', 'optimizer.use_old_adam=False', 'optimizer.fp16_adam_stats=False', 'optimizer.tpu=True', 'optimizer.lr=[0.0006]', 'lr_scheduler=polynomial_decay', 'lr_scheduler._name=polynomial_decay', 'lr_scheduler.warmup_updates=24000', 'lr_scheduler.force_anneal=null', 'lr_scheduler.end_learning_rate=0.0', 'lr_scheduler.power=1.0', 'lr_scheduler.total_num_update=500000.0', 'lr_scheduler.lr=[0.0006]']
Traceback (most recent call last):
File "dataset2bpe.py", line 10, in <module>
roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
File "/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/hub.py", line 370, in load
model = _load_local(repo_or_dir, model, *args, **kwargs)
File "/home/yang/Essential/anaconda3/lib/python3.8/site-packages/torch/hub.py", line 399, in _load_local
model = entry(*args, **kwargs)
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/models/roberta/model.py", line 277, in from_pretrained
x = hub_utils.from_pretrained(
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/hub_utils.py", line 73, in from_pretrained
models, args, task = checkpoint_utils.load_model_ensemble_and_task(
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/checkpoint_utils.py", line 421, in load_model_ensemble_and_task
state = load_checkpoint_to_cpu(filename, arg_overrides)
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/checkpoint_utils.py", line 339, in load_checkpoint_to_cpu
state = _upgrade_state_dict(state)
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/checkpoint_utils.py", line 643, in _upgrade_state_dict
state["cfg"] = convert_namespace_to_omegaconf(state["args"])
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/dataclass/utils.py", line 389, in convert_namespace_to_omegaconf
composed_cfg = compose("config", overrides=overrides, strict=False)
TypeError: compose() got an unexpected keyword argument 'strict'
Hi @guanqun-yang, this is almost certainly a fairseq
issue. I think the fairseq
you are using is not the local implementation provided in the repository (I can see paths like /home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/dataclass/utils.py
in the stacktrace rather than local paths). Could you try to uninstall fairseq
and install it again using the local fairseq
folder?
@martiansideofthemoon Thanks for your reply!
I removed all fairseq
installed globally, started afresh with a newly cloned repo, and configured the environment as below. But it seems a fairseq
will be downloaded to /home/yang/.cache
anyway whether there is a global installation or not
virtualenv -p python3 style-venv
source style-venv/bin/activate
pip install torch==1.5.0+cu101 torchvision==0.6.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
pip install --editable ./
cd fairseq
pip install --editable ./
The following are the full stack traces after executing datasets/dataset2bpe.py
. It seems that the problems come from this line.
Using cache found in /home/yang/.cache/torch/hub/pytorch_fairseq_master
/home/yang/style-transfer-paraphrase/style-venv/lib/python3.6/site-packages/hydra/experimental/initialize.py:37: UserWarning: hydra.experimental.initialize() is no longer experimental. Use hydra.initialize()
message="hydra.experimental.initialize() is no longer experimental."
Error when composing. Overrides: ['common.no_progress_bar=False', 'common.log_interval=25', "common.log_format='json'", 'common.log_file=null', 'common.tensorboard_logdir=null', 'common.wandb_project=null', 'common.azureml_logging=False', 'common.seed=1', 'common.cpu=False', 'common.tpu=False', 'common.bf16=False', 'common.memory_efficient_bf16=False', 'common.fp16=True', 'common.memory_efficient_fp16=True', 'common.fp16_no_flatten_grads=False', 'common.fp16_init_scale=4', 'common.fp16_scale_window=128', 'common.fp16_scale_tolerance=0.0', 'common.on_cpu_convert_precision=False', 'common.min_loss_scale=0.0001', 'common.threshold_loss_scale=1.0', 'common.amp=False', 'common.amp_batch_retries=2', 'common.amp_init_scale=128', 'common.amp_scale_window=null', 'common.user_dir=null', 'common.empty_cache_freq=0', 'common.all_gather_list_size=16384', 'common.model_parallel_size=1', 'common.quantization_config_path=null', 'common.profile=False', 'common.reset_logging=False', 'common.suppress_crashes=False', 'common.use_plasma_view=False', "common.plasma_path='/tmp/plasma'", 'common_eval.path=null', 'common_eval.post_process=null', 'common_eval.quiet=False', "common_eval.model_overrides='{}'", 'common_eval.results_path=null', 'distributed_training.distributed_world_size=512', 'distributed_training.distributed_num_procs=1', 'distributed_training.distributed_rank=0', "distributed_training.distributed_backend='nccl'", 'distributed_training.distributed_init_method=null', 'distributed_training.distributed_port=19812', 'distributed_training.device_id=0', 'distributed_training.distributed_no_spawn=False', "distributed_training.ddp_backend='c10d'", "distributed_training.ddp_comm_hook='none'", 'distributed_training.bucket_cap_mb=200', 'distributed_training.fix_batches_to_gpus=False', 'distributed_training.find_unused_parameters=True', 'distributed_training.fast_stat_sync=False', 'distributed_training.heartbeat_timeout=-1', 'distributed_training.broadcast_buffers=False', 'distributed_training.slowmo_momentum=null', "distributed_training.slowmo_algorithm='LocalSGD'", 'distributed_training.localsgd_frequency=3', 'distributed_training.nprocs_per_node=1', 'distributed_training.pipeline_model_parallel=False', 'distributed_training.pipeline_balance=null', 'distributed_training.pipeline_devices=null', 'distributed_training.pipeline_chunks=0', 'distributed_training.pipeline_encoder_balance=null', 'distributed_training.pipeline_encoder_devices=null', 'distributed_training.pipeline_decoder_balance=null', 'distributed_training.pipeline_decoder_devices=null', "distributed_training.pipeline_checkpoint='never'", "distributed_training.zero_sharding='none'", 'distributed_training.fp16=True', 'distributed_training.memory_efficient_fp16=True', 'distributed_training.tpu=True', 'distributed_training.no_reshard_after_forward=False', 'distributed_training.fp32_reduce_scatter=False', 'distributed_training.cpu_offload=False', 'distributed_training.use_sharded_state=False', 'dataset.num_workers=2', 'dataset.skip_invalid_size_inputs_valid_test=True', 'dataset.max_tokens=999999', 'dataset.batch_size=null', 'dataset.required_batch_size_multiple=1', 'dataset.required_seq_len_multiple=1', "dataset.dataset_impl='mmap'", 'dataset.data_buffer_size=10', "dataset.train_subset='train'", "dataset.valid_subset='valid'", 'dataset.combine_valid_subsets=null', 'dataset.ignore_unused_valid_subsets=False', 'dataset.validate_interval=1', 'dataset.validate_interval_updates=0', 'dataset.validate_after_updates=0', 'dataset.fixed_validation_seed=null', 'dataset.disable_validation=False', "dataset.max_tokens_valid='${dataset.max_tokens}'", "dataset.batch_size_valid='${dataset.batch_size}'", 'dataset.max_valid_steps=null', 'dataset.curriculum=0', "dataset.gen_subset='test'", 'dataset.num_shards=1', 'dataset.shard_id=0', 'optimization.max_epoch=0', 'optimization.max_update=500000', 'optimization.stop_time_hours=0.0', 'optimization.clip_norm=0.0', 'optimization.sentence_avg=False', 'optimization.update_freq=[1]', 'optimization.lr=[0.0006]', 'optimization.stop_min_lr=-1.0', 'optimization.use_bmuf=False', "checkpoint.save_dir='checkpoints'", "checkpoint.restore_file='checkpoint_last.pt'", 'checkpoint.finetune_from_model=null', 'checkpoint.reset_dataloader=True', 'checkpoint.reset_lr_scheduler=False', 'checkpoint.reset_meters=False', 'checkpoint.reset_optimizer=False', "checkpoint.optimizer_overrides='{}'", 'checkpoint.save_interval=1', 'checkpoint.save_interval_updates=2000', 'checkpoint.keep_interval_updates=-1', 'checkpoint.keep_interval_updates_pattern=-1', 'checkpoint.keep_last_epochs=-1', 'checkpoint.keep_best_checkpoints=-1', 'checkpoint.no_save=False', 'checkpoint.no_epoch_checkpoints=True', 'checkpoint.no_last_checkpoints=False', 'checkpoint.no_save_optimizer_state=False', "checkpoint.best_checkpoint_metric='loss'", 'checkpoint.maximize_best_checkpoint_metric=False', 'checkpoint.patience=-1', "checkpoint.checkpoint_suffix=''", 'checkpoint.checkpoint_shard_count=1', 'checkpoint.load_checkpoint_on_all_dp_ranks=False', 'checkpoint.write_checkpoints_asynchronously=False', "checkpoint.model_parallel_size='${common.model_parallel_size}'", 'bmuf.block_lr=1.0', 'bmuf.block_momentum=0.875', 'bmuf.global_sync_iter=10', 'bmuf.warmup_iterations=500', 'bmuf.use_nbm=False', 'bmuf.average_sync=False', 'bmuf.distributed_world_size=512', 'generation.beam=5', 'generation.nbest=1', 'generation.max_len_a=0.0', 'generation.max_len_b=200', 'generation.min_len=1', 'generation.match_source_len=False', 'generation.unnormalized=False', 'generation.no_early_stop=False', 'generation.no_beamable_mm=False', 'generation.lenpen=1.0', 'generation.unkpen=0.0', 'generation.replace_unk=null', 'generation.sacrebleu=False', 'generation.score_reference=False', 'generation.prefix_size=0', 'generation.no_repeat_ngram_size=0', 'generation.sampling=False', 'generation.sampling_topk=-1', 'generation.sampling_topp=-1.0', 'generation.constraints=null', 'generation.temperature=1.0', 'generation.diverse_beam_groups=-1', 'generation.diverse_beam_strength=0.5', 'generation.diversity_rate=-1.0', 'generation.print_alignment=null', 'generation.print_step=False', 'generation.lm_path=null', 'generation.lm_weight=0.0', 'generation.iter_decode_eos_penalty=0.0', 'generation.iter_decode_max_iter=10', 'generation.iter_decode_force_max_iter=False', 'generation.iter_decode_with_beam=1', 'generation.iter_decode_with_external_reranker=False', 'generation.retain_iter_history=False', 'generation.retain_dropout=False', 'generation.retain_dropout_modules=null', 'generation.decoding_format=null', 'generation.no_seed_provided=False', 'eval_lm.output_word_probs=False', 'eval_lm.output_word_stats=False', 'eval_lm.context_window=0', 'eval_lm.softmax_batch=9223372036854775807', 'interactive.buffer_size=0', "interactive.input='-'", 'task=masked_lm', 'task._name=masked_lm', "task.data='/home/yang/.cache/torch/hub/pytorch_fairseq/37d2bc14cf6332d61ed5abeb579948e6054e46cc724c7d23426382d11a31b2d6.ae5852b4abc6bf762e0b6b30f19e741aa05562471e9eb8f4a6ae261f04f9b350'", "task.sample_break_mode='complete'", 'task.tokens_per_sample=512', 'task.mask_prob=0.15', 'task.leave_unmasked_prob=0.1', 'task.random_token_prob=0.1', 'task.freq_weighted_replacement=False', 'task.mask_whole_words=False', 'task.mask_multiple_length=1', 'task.mask_stdev=0.0', "task.shorten_method='none'", "task.shorten_data_split_list=''", 'task.seed=1', 'criterion=masked_lm', 'criterion._name=masked_lm', 'criterion.tpu=True', 'bpe=gpt2', 'bpe._name=gpt2', "bpe.gpt2_encoder_json='https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'", "bpe.gpt2_vocab_bpe='https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'", 'optimizer=adam', 'optimizer._name=adam', "optimizer.adam_betas='(0.9, 0.98)'", 'optimizer.adam_eps=1e-06', 'optimizer.weight_decay=0.01', 'optimizer.use_old_adam=False', 'optimizer.fp16_adam_stats=False', 'optimizer.tpu=True', 'optimizer.lr=[0.0006]', 'lr_scheduler=polynomial_decay', 'lr_scheduler._name=polynomial_decay', 'lr_scheduler.warmup_updates=24000', 'lr_scheduler.force_anneal=null', 'lr_scheduler.end_learning_rate=0.0', 'lr_scheduler.power=1.0', 'lr_scheduler.total_num_update=500000.0', 'lr_scheduler.lr=[0.0006]']
Traceback (most recent call last):
File "dataset2bpe.py", line 10, in <module>
roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
File "/home/yang/style-transfer-paraphrase/style-venv/lib/python3.6/site-packages/torch/hub.py", line 369, in load
model = entry(*args, **kwargs)
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/models/roberta/model.py", line 284, in from_pretrained
**kwargs,
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/hub_utils.py", line 75, in from_pretrained
arg_overrides=kwargs,
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/checkpoint_utils.py", line 421, in load_model_ensemble_and_task
state = load_checkpoint_to_cpu(filename, arg_overrides)
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/checkpoint_utils.py", line 339, in load_checkpoint_to_cpu
state = _upgrade_state_dict(state)
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/checkpoint_utils.py", line 643, in _upgrade_state_dict
state["cfg"] = convert_namespace_to_omegaconf(state["args"])
File "/home/yang/.cache/torch/hub/pytorch_fairseq_master/fairseq/dataclass/utils.py", line 389, in convert_namespace_to_omegaconf
composed_cfg = compose("config", overrides=overrides, strict=False)
TypeError: compose() got an unexpected keyword argument 'strict'
@martiansideofthemoon I managed to find a workaround after some attempts. I will post my solution after my experiments.
Great good to know! Do post your solution here whenever you get a chance
Hi
I am trying to train a style transfer model for a style (i.e., profane vs. civil) that is not supported in the paper. However, when I tried to run the first step as is instructed in the repository
where
datasets/golbeck
is a dataset on toxicity comments with required directory structure.a series of errors on some dependencies are reported.
It seems to me that this should be related to the installation. Here are the full installation commands I used.
I am wondering how I could resolve this issue. In order to reproduce this error, the data is provided here.