Objects, Invariants and Properties for Graph Theory (GT) automated conjecturing: in particular with the Sage program CONJECTURING: http://nvcleemp.github.io/conjecturing/
GNU General Public License v3.0
15
stars
6
forks
source link
Theorem: claw_free and paw_free sufficient for hamiltonian #513
(1) Add property: is_claw_free_paw_free iff is_claw_free AND is_paw_free
(2) Add theorem goodman_hedetniemi(g) iff 2-connected AND is_claw_free_paw_free
This is a sufficient condition due to Goodman and Hedetniemi for a graph having a Hamilton cycle.
See:
Goodman, S., and S. Hedetniemi. "Sufficient conditions for a graph to be hamiltonian." Journal of Combinatorial Theory, Series B 16.2 (1974): 175-180. (attached)
See: #512.
(1) Add property: is_claw_free_paw_free iff is_claw_free AND is_paw_free
(2) Add theorem goodman_hedetniemi(g) iff 2-connected AND is_claw_free_paw_free
This is a sufficient condition due to Goodman and Hedetniemi for a graph having a Hamilton cycle.
See: Goodman, S., and S. Hedetniemi. "Sufficient conditions for a graph to be hamiltonian." Journal of Combinatorial Theory, Series B 16.2 (1974): 175-180. (attached)
goodman-hedetniemi-sufficient-conditions-hamiltonicity-1974.pdf