Closed mathematicalmichael closed 3 years ago
truth is pulled from the VERY messy data structure, so fixing one should fix the other automatically.
the fix should be inside of the function that calculates the statistics instead, passed to _re
/_rm
tolerances:
for _res in res:
_prefix, _in, _rm, _re = _res
regression_err_mean, slope_err_mean, \
regression_err_vars, slope_err_vars, \
sd_means, sd_vars, num_sensors = _re
plt.plot(tolerances, regression_err_vars,
label=f"{_prefix:10s} slope: {slope_err_vars:1.4f}",
lw=linewidth)
plt.scatter(tolerances, sd_vars, marker='x', lw=20)
...
plt.figure(figsize=(10, 10))
for _res in res:
_prefix, _in, _rm, _re = _res
regression_err_mean, slope_err_mean, \
regression_err_vars, slope_err_vars, \
sd_means, sd_vars, num_sensors = _re
plt.plot(tolerances, regression_err_mean,
label=f"{_prefix:10s} slope: {slope_err_mean:1.4f}",
lw=linewidth)
plt.scatter(tolerances, sd_means, marker='x', lw=20)
measurements:
for _res in res:
_prefix, _in, _rm, _re = _res
solutions = _in[-1]
measurements = list(solutions.keys())
regression_mean, slope_mean, \
regression_vars, slope_vars, \
means, variances = _rm
plt.plot(measurements[:len(regression_mean)], regression_mean,
label=f"{_prefix:4s} slope: {slope_mean:1.4f}",
lw=linewidth)
plt.scatter(measurements[:len(means)], means, marker='x', lw=20)
...
for _res in res:
_prefix, _in, _rm, _re = _res
regression_mean, slope_mean, \
regression_vars, slope_vars, \
means, variances = _rm
plt.plot(measurements[:len(regression_vars)], regression_vars,
label=f"{_prefix:4s} slope: {slope_vars:1.4f}",
lw=linewidth)
plt.scatter(measurements[:len(variances)], variances,
marker='x', lw=20)
_re = (regression_err_mean, slope_err_mean,
regression_err_vars, slope_err_vars,
sd_means, sd_vars, num_sensors)
_rm = (regression_mean, slope_mean, regression_vars, slope_vars, means, variances)
TODO:
experiment_equipment
to look like experiment_measurements
ode
will also need to change if the function isn't backwards compatible.
PDE should compute distance to projection instead of
lam_true
when dim > 1. In dim == 1, keep distance to truth.