Open angyee opened 5 years ago
I am in same trouble with you .
import tensorflow as tf from keras import backend as K from tensorflow.python.framework import graph_util
model_keras = model.keras_model
K.set_learning_phase(0)
num_output = 7 pred_node_names = ["detections", "mrcnn_class", "mrcnn_bbox", "mrcnn_mask", "rois", "rpn_class", "rpn_bbox"] pred_nodenames = ["output" + name for name in pred_node_names] pred = [tf.identity(model_keras.outputs[i], name=pred_node_names[i]) for i in range(num_output)]
sess = K.get_session()
od_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), pred_node_names)
model_dirpath = os.path.dirname("model/") if not os.path.exists(model_dirpath): os.mkdir(model_dirpath) filename = 'mrcnn_model.pb' pb_filepath = os.path.join(model_dirpath, filename) print('Saving frozen graph {} ...'.format(os.path.basename(pb_filepath)))
frozen_graph_path = pb_filepath with tf.gfile.GFile(frozen_graph_path, 'wb') as f: f.write(od_graph_def.SerializeToString())
import tensorflow as tf from keras import backend as K from tensorflow.python.framework import graph_util
model_keras = model.keras_model
All new operations will be in test mode from now on.
K.set_learning_phase(0)
Create output layer with customized names
num_output = 7 pred_node_names = ["detections", "mrcnn_class", "mrcnn_bbox", "mrcnn_mask", "rois", "rpn_class", "rpn_bbox"] pred_nodenames = ["output" + name for name in pred_node_names] pred = [tf.identity(model_keras.outputs[i], name=pred_node_names[i]) for i in range(num_output)]
sess = K.get_session()
Get the object detection graph
od_graph_def = graph_util.convert_variables_to_constants(sess, sess.graph.as_graph_def(), pred_node_names)
model_dirpath = os.path.dirname("model/") if not os.path.exists(model_dirpath): os.mkdir(model_dirpath) filename = 'mrcnn_model.pb' pb_filepath = os.path.join(model_dirpath, filename) print('Saving frozen graph {} ...'.format(os.path.basename(pb_filepath)))
frozen_graph_path = pb_filepath with tf.gfile.GFile(frozen_graph_path, 'wb') as f: f.write(od_graph_def.SerializeToString())
not understand how to do step by step explain.
i am running
sudo python3 keras_to_tensorflow.py --input_model=/home/deepedge/mask_rcnn-master/mask_rcnn_damage_0010.h5 --output_model=/home/deepedge/mask_rcnn-master/dent.pb
and getting
Using TensorFlow backend.
E0619 15:22:44.379571 140399717234496 keras_to_tensorflow.py:95] Input file specified only holds the weights, and not the model definition. Save the model using model.save(filename.h5) which will contain the network architecture as well as its weights. If the model is saved using the model.save_weights(filename) function, either input_model_json or input_model_yaml flags should be set to to import the network architecture prior to loading the weights.
Check the keras documentation for more details (https://keras.io/getting-started/faq/)
Traceback (most recent call last):
File "keras_to_tensorflow.py", line 182, in
I didn't use keras_to_tensorflow.py tool, I just save the .pb in the inference code,and it works
I didn't use keras_to_tensorflow.py tool, I just save the .pb in the inference code,and it works
how to solve my problem??
I am in same trouble with you .
you solved this problem??
I didn't use keras_to_tensorflow.py tool, I just save the .pb in the inference code,and it works
Yeah, just save the .pb model in the inference code, but remember save network structure to the .pb file.
I didn't use keras_to_tensorflow.py tool, I just save the .pb in the inference code,and it works
Yeah, just save the .pb model in the inference code, but remember save network structure to the .pb file.
my problem is to convert .h5 to .pb file, you solved?
i did this
i am running
sudo python3 keras_to_tensorflow.py --input_model=/home/deepedge/mask_rcnn-master/mask_rcnn_damage_0010.h5 --output_model=/home/deepedge/mask_rcnn-master/dent.pb
and getting
Using TensorFlow backend. E0619 15:22:44.379571 140399717234496 keras_to_tensorflow.py:95] Input file specified only holds the weights, and not the model definition. Save the model using model.save(filename.h5) which will contain the network architecture as well as its weights. If the model is saved using the model.save_weights(filename) function, either input_model_json or input_model_yaml flags should be set to to import the network architecture prior to loading the weights. Check the keras documentation for more details (https://keras.io/getting-started/faq/) Traceback (most recent call last): File "keras_to_tensorflow.py", line 182, in app.run(main) File "/usr/local/lib/python3.6/dist-packages/absl/app.py", line 300, in run _run_main(main, args) File "/usr/local/lib/python3.6/dist-packages/absl/app.py", line 251, in _run_main sys.exit(main(argv)) File "keras_to_tensorflow.py", line 128, in main model = load_model(FLAGS.input_model, FLAGS.input_model_json, FLAGS.input_model_yaml) File "keras_to_tensorflow.py", line 106, in load_model raise wrong_file_err File "keras_to_tensorflow.py", line 63, in load_model model = keras.models.load_model(input_model_path) File "/usr/local/lib/python3.6/dist-packages/keras/engine/saving.py", line 419, in load_model model = _deserialize_model(f, custom_objects, compile) File "/usr/local/lib/python3.6/dist-packages/keras/engine/saving.py", line 221, in _deserialize_model model_config = f['model_config'] File "/usr/local/lib/python3.6/dist-packages/keras/utils/io_utils.py", line 302, in getitem raise ValueError('Cannot create group in read only mode.') ValueError: Cannot create group in read only mode.
@moorage @waleedka @PavlosMelissinos @haeric @rymalia
freeze graph and export the pre-trained coco model as .pb, let me know
in hierarchy, save the content as .py file at the REAME level, change DEFAULT_WEIGHTS
to the mask_rcnn_coco.h5
file
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import sys
import warnings
import keras.backend as K
import tensorflow as tf
warnings.filterwarnings('ignore', category=FutureWarning)
# suppress warning and error message tf
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Root directory of the project
ROOT_DIR = os.getcwd()
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn import model as modellib
from mrcnn import utils
from samples.coco import coco
K.clear_session()
K.set_learning_phase(0)
##############################################################################
# Load model
##############################################################################
# Model Directory
MODEL_DIR = os.path.join(os.path.dirname(__file__), "logs")
DEFAULT_WEIGHTS = os.path.join(os.path.dirname(__file__) , "samples/coco/mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(DEFAULT_WEIGHTS):
utils.download_trained_weights(DEFAULT_WEIGHTS)
##############################################################################
# Load configuration
##############################################################################
class InferenceConfig(coco.CocoConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
##############################################################################
# Save entire model function
##############################################################################
def h5_to_pb(h5_model, output_dir, model_name, out_prefix="output_"):
out_nodes = []
for i in range(len(h5_model.outputs)):
out_nodes.append(out_prefix + str(i + 1))
tf.identity(h5_model.output[i], out_prefix + str(i + 1))
sess = K.get_session()
init_graph = sess.graph.as_graph_def()
main_graph = tf._api.v1.graph_util.convert_variables_to_constants(sess, init_graph, out_nodes)
with tf.gfile.GFile(os.path.join(output_dir, model_name), "wb") as filemodel:
filemodel.write(main_graph.SerializeToString())
print("pb model: ", {os.path.join(output_dir, model_name)})
if __name__ == "__main__":
config = InferenceConfig()
config.display()
# Create model in inference mode
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
# Set path to model weights
weights_path = DEFAULT_WEIGHTS#model.find_last()
# Load weights
print("Loading weights ", weights_path)
model.load_weights(weights_path, by_name=True)
model.keras_model.summary()
# make folder for full model
model_dir = os.path.join(ROOT_DIR, "Model")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# save h5 full model
name_model = os.path.join(model_dir, "mask_rcnn_landing.h5")
if not os.path.exists(name_model):
model.keras_model.save(name_model)
print("save model: ", name_model)
# export pb model
pb_name_model = "mask_rcnn_landing.pb"
h5_to_pb(model.keras_model, output_dir=model_dir, model_name=pb_name_model)
K.clear_session()
sys.exit()
to run the graph on cpu replace model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
DEVICE = "/cpu:0"
with tf.device(DEVICE):
model = modellib.MaskRCNN(
mode="inference", model_dir=MODEL_DIR, config=config)
to create the .pbtxt file create another .py file with following
# This file is useful for reading the contents of the ops generated by ruby.
# You can read any graph defination in pb/pbtxt format generated by ruby
# or by python and then convert it back and forth from human readable to binary format.
import tensorflow as tf
from google.protobuf import text_format
from tensorflow.python.platform import gfile
def pbtxt_to_graphdef(filename):
with open(filename, 'r') as f:
graph_def = tf.GraphDef()
file_content = f.read()
text_format.Merge(file_content, graph_def)
tf.import_graph_def(graph_def, name='')
tf.train.write_graph(graph_def, 'pbtxt/', 'protobuf.pb', as_text=False)
def graphdef_to_pbtxt(filename):
with gfile.FastGFile(filename,'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
tf.train.write_graph(graph_def, 'pbtxt/', 'protobuf.pbtxt', as_text=True)
return
graphdef_to_pbtxt('path/to/created/graph.pb') # here you can write the name of the file to be converted
# and then a new file will be made in pbtxt directory.
freeze graph and export the pre-trained coco model as .pb, let me know
in hierarchy, save the content as .py file at the REAME level, change
DEFAULT_WEIGHTS
to themask_rcnn_coco.h5
file#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys import warnings import keras.backend as K import tensorflow as tf warnings.filterwarnings('ignore', category=FutureWarning) # suppress warning and error message tf os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # Root directory of the project ROOT_DIR = os.getcwd() # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn import model as modellib from mrcnn import utils from samples.coco import coco K.clear_session() K.set_learning_phase(0) ############################################################################## # Load model ############################################################################## # Model Directory MODEL_DIR = os.path.join(os.path.dirname(__file__), "logs") DEFAULT_WEIGHTS = os.path.join(os.path.dirname(__file__) , "samples/coco/mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed if not os.path.exists(DEFAULT_WEIGHTS): utils.download_trained_weights(DEFAULT_WEIGHTS) ############################################################################## # Load configuration ############################################################################## class InferenceConfig(coco.CocoConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 ############################################################################## # Save entire model function ############################################################################## def h5_to_pb(h5_model, output_dir, model_name, out_prefix="output_"): out_nodes = [] for i in range(len(h5_model.outputs)): out_nodes.append(out_prefix + str(i + 1)) tf.identity(h5_model.output[i], out_prefix + str(i + 1)) sess = K.get_session() init_graph = sess.graph.as_graph_def() main_graph = tf._api.v1.graph_util.convert_variables_to_constants(sess, init_graph, out_nodes) with tf.gfile.GFile(os.path.join(output_dir, model_name), "wb") as filemodel: filemodel.write(main_graph.SerializeToString()) print("pb model: ", {os.path.join(output_dir, model_name)}) if __name__ == "__main__": config = InferenceConfig() config.display() # Create model in inference mode model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Set path to model weights weights_path = DEFAULT_WEIGHTS#model.find_last() # Load weights print("Loading weights ", weights_path) model.load_weights(weights_path, by_name=True) model.keras_model.summary() # make folder for full model model_dir = os.path.join(ROOT_DIR, "Model") if not os.path.exists(model_dir): os.makedirs(model_dir) # save h5 full model name_model = os.path.join(model_dir, "mask_rcnn_landing.h5") if not os.path.exists(name_model): model.keras_model.save(name_model) print("save model: ", name_model) # export pb model pb_name_model = "mask_rcnn_landing.pb" h5_to_pb(model.keras_model, output_dir=model_dir, model_name=pb_name_model) K.clear_session() sys.exit()
to run the graph on cpu replace
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
DEVICE = "/cpu:0" with tf.device(DEVICE): model = modellib.MaskRCNN( mode="inference", model_dir=MODEL_DIR, config=config)
to create the .pbtxt file create another .py file with following
# This file is useful for reading the contents of the ops generated by ruby. # You can read any graph defination in pb/pbtxt format generated by ruby # or by python and then convert it back and forth from human readable to binary format. import tensorflow as tf from google.protobuf import text_format from tensorflow.python.platform import gfile def pbtxt_to_graphdef(filename): with open(filename, 'r') as f: graph_def = tf.GraphDef() file_content = f.read() text_format.Merge(file_content, graph_def) tf.import_graph_def(graph_def, name='') tf.train.write_graph(graph_def, 'pbtxt/', 'protobuf.pb', as_text=False) def graphdef_to_pbtxt(filename): with gfile.FastGFile(filename,'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name='') tf.train.write_graph(graph_def, 'pbtxt/', 'protobuf.pbtxt', as_text=True) return graphdef_to_pbtxt('path/to/created/graph.pb') # here you can write the name of the file to be converted # and then a new file will be made in pbtxt directory.
Hello @ArashHosseini . Thanks for informations. But, i am trying to run MatterPort's Mask RCNN model by using OpenCV. When i generate the .pb and .pbtxt files, cv.readnetfromtensorflow gives me error as: "cv2.error: OpenCV(4.1.2) C:\projects\opencv-python\opencv\modules\dnn\src\tensorflow\tf_io.cpp:54: error: (-2:Unspecified error) FAILED: ReadProtoFromTextFile(param_file, param). Failed to parse GraphDef file: ./IG/protobuf.pbtxt in function 'cv::dnn::ReadTFNetParamsFromTextFileOrDie'"
How can i overcome this problem. Thanks...
Hello @kaanaykutkabakci , did you find any solution for ReadNetfromTensorflow (.pb, .pbtxt) problem?
Hello @chrigui94 , unfortunately, I could not find any solution. I have gave up converting MatterPorts Keras model to TF. I have built a custom Mask RCNN structure by using TensorFlow Object Detection API.
convert-to pb file
#!encoding=utf-8
'''
#-----------------
Authors:邹九
Time:2019-11-21
#-----------------
'''
"""
Copyright (c) 2019, by the Authors: Amir H. Abdi
This script is freely available under the MIT Public License.
Please see the License file in the root for details.
The following code snippet will convert the keras model files
to the freezed .pb tensorflow weight file. The resultant TensorFlow model
holds both the model architecture and its associated weights.
"""
import tensorflow as tf
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import graph_io
from pathlib import Path
from absl import app
from absl import flags
from absl import logging
from mrcnn import model as modellib
from mrcnn.config import Config
import keras
import os
from keras import backend as K
from keras.models import model_from_json, model_from_yaml
from keras.utils.vis_utils import plot_model
COCO_MODEL_PATH = r'../logs/shapes20191113T1540_mask_rcnn_shapes_0199.h5'
K.set_learning_phase(0)
FLAGS = flags.FLAGS
flags.DEFINE_string('input_model', default=r'', help='Path to the input model.')
flags.DEFINE_string('input_model_json', None, 'Path to the input model '
'architecture in json format.')
flags.DEFINE_string('input_model_yaml', None, 'Path to the input model architecture in yaml format.')
flags.DEFINE_string('output_model', default=r'./shapes20191113T1540_mask_rcnn_shapes_0199.pb', help='Path where the converted model will be stored.')
flags.DEFINE_boolean('save_graph_def', False,
'Whether to save the graphdef.pbtxt file which contains '
'the graph definition in ASCII format.')
flags.DEFINE_string('output_nodes_prefix', None,
'If set, the output nodes will be renamed to '
'`output_nodes_prefix`+i, where `i` will numerate the '
'number of of output nodes of the network.')
flags.DEFINE_boolean('quantize', False,
'If set, the resultant TensorFlow graph weights will be '
'converted from float into eight-bit equivalents. See '
'documentation here: '
'https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/graph_transforms')
flags.DEFINE_boolean('channels_first', False,
'Whether channels are the first dimension of a tensor. '
'The default is TensorFlow behaviour where channels are '
'the last dimension.')
flags.DEFINE_boolean('output_meta_ckpt', False,
'If set to True, exports the model as .meta, .index, and '
'.data files, with a checkpoint file. These can be later '
'loaded in TensorFlow to continue training.')
flags.mark_flag_as_required('input_model')
flags.mark_flag_as_required('output_model')
def load_model(input_model_path, input_json_path=None, input_yaml_path=None):
if not Path(input_model_path).exists():
raise FileNotFoundError(
'Model file `{}` does not exist.'.format(input_model_path))
try:
model = keras.models.load_model(input_model_path)
return model
except FileNotFoundError as err:
logging.error('Input mode file (%s) does not exist.', FLAGS.input_model)
raise err
except ValueError as wrong_file_err:
if input_json_path:
if not Path(input_json_path).exists():
raise FileNotFoundError(
'Model description json file `{}` does not exist.'.format(
input_json_path))
try:
model = model_from_json(open(str(input_json_path)).read())
model.load_weights(input_model_path)
return model
except Exception as err:
logging.error("Couldn't load model from json.")
raise err
elif input_yaml_path:
if not Path(input_yaml_path).exists():
raise FileNotFoundError(
'Model description yaml file `{}` does not exist.'.format(
input_yaml_path))
try:
model = model_from_yaml(open(str(input_yaml_path)).read())
model.load_weights(input_model_path)
return model
except Exception as err:
logging.error("Couldn't load model from yaml.")
raise err
else:
logging.error(
'Input file specified only holds the weights, and not '
'the model definition. Save the model using '
'model.save(filename.h5) which will contain the network '
'architecture as well as its weights. '
'If the model is saved using the '
'model.save_weights(filename) function, either '
'input_model_json or input_model_yaml flags should be set to '
'to import the network architecture prior to loading the '
'weights. \n'
'Check the keras documentation for more details '
'(https://keras.io/getting-started/faq/)')
raise wrong_file_err
class ShapesConfig(Config):
"""Configuration for training on the toy shapes dataset.
Derives from the base Config class and overrides values specific
to the toy shapes dataset.
"""
# Give the configuration a recognizable name
NAME = "shapes"
# Number of classes (including background)
NUM_CLASSES = 1 + 14 # background + 15 object
# Choose the number of GPU devices
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# Use small images for faster training. Set the limits of the small side
# the large side, and that determines the image shape.
IMAGE_RESIZE_MODE = "square"
IMAGE_MAX_DIM = 896
RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6) # anchor side in pixels
# RPN_ANCHOR_SCALES = (8*5, 16*5, 32*5, 64*5, 128*5) # anchor side in pixels
# Reduce training ROIs per image because the images are small and have
# few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
TRAIN_ROIS_PER_IMAGE = 100
# Use a small epoch since the data is simple
# STEPS_PER_EPOCH = 1000
STEPS_PER_EPOCH = 1000
# use small validation steps since the epoch is small
VALIDATION_STEPS = 25
def main(args):
# If output_model path is relative and in cwd, make it absolute from root
output_model = FLAGS.output_model
if str(Path(output_model).parent) == '.':
output_model = str((Path.cwd() / output_model))
output_fld = Path(output_model).parent
output_model_name = Path(output_model).name
output_model_stem = Path(output_model).stem
output_model_pbtxt_name = output_model_stem + '.pbtxt'
# Create output directory if it does not exist
Path(output_model).parent.mkdir(parents=True, exist_ok=True)
if FLAGS.channels_first:
K.set_image_data_format('channels_first')
else:
K.set_image_data_format('channels_last')
# model = load_model(FLAGS.input_model, FLAGS.input_model_json, FLAGS.input_model_yaml)
##--------------------------------------------------------------------------------------#
config = ShapesConfig()
config.display()
MODEL_DIR = r'E:\Desktop\Projects\Mask_RCNN-master\logs'
model = modellib.MaskRCNN(mode="inference", config=config,\
model_dir=MODEL_DIR)
model.load_weights(COCO_MODEL_PATH, by_name=True)#exclude=["mrcnn_class_logits", "mrcnn_bbox_fc",\
# "mrcnn_bbox", "mrcnn_mask"])
# print(model.summary())
# plot_model(model, to_file='model1.png', show_shapes=True)
# model_json = model.to_json()
# with open(r'./modle.json', 'w') as file:
# file.write(model_json)
print('loaded model and saved json file')
##--------------------------------------------------------------------------------------#
# TODO(amirabdi): Support networks with multiple inputs
# orig_output_node_names = [node.op.name for node in model.outputs]
orig_output_node_names = ['mrcnn_detection/Reshape_1', 'mrcnn_class/Softmax', 'mrcnn_bbox/Reshape',\
'mrcnn_mask/Sigmoid', 'ROI/packed_2', 'rpn_class/concat', 'rpn_bbox/concat']
if FLAGS.output_nodes_prefix:
num_output = len(orig_output_node_names)
pred = [None] * num_output
converted_output_node_names = [None] * num_output
# Create dummy tf nodes to rename output
for i in range(num_output):
converted_output_node_names[i] = '{}{}'.format(
FLAGS.output_nodes_prefix, i)
pred[i] = tf.identity(model.outputs[i],
name=converted_output_node_names[i])
else:
converted_output_node_names = orig_output_node_names
logging.info('Converted output node names are: %s',
str(converted_output_node_names))
sess = K.get_session()
if FLAGS.output_meta_ckpt:
saver = tf.train.Saver()
saver.save(sess, str(output_fld / output_model_stem))
if FLAGS.save_graph_def:
tf.train.write_graph(sess.graph.as_graph_def(), str(output_fld),
output_model_pbtxt_name, as_text=True)
logging.info('Saved the graph definition in ascii format at %s',
str(Path(output_fld) / output_model_pbtxt_name))
if FLAGS.quantize:
from tensorflow.tools.graph_transforms import TransformGraph
transforms = ["quantize_weights", "quantize_nodes"]
transformed_graph_def = TransformGraph(sess.graph.as_graph_def(), [],
converted_output_node_names,
transforms)
constant_graph = graph_util.convert_variables_to_constants(
sess,
transformed_graph_def,
converted_output_node_names)
else:
constant_graph = graph_util.convert_variables_to_constants(
sess,
sess.graph.as_graph_def(),
converted_output_node_names)
graph_io.write_graph(constant_graph, str(output_fld), output_model_name,
as_text=False)
logging.info('Saved the freezed graph at %s',
str(Path(output_fld) / output_model_name))
if __name__ == "__main__":
app.run(main)
load pb model
def load_detection_model(model):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(model, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
input_image = tf.get_default_graph().get_tensor_by_name('input_image:0')
input_image_meta = tf.get_default_graph().get_tensor_by_name('input_image_meta:0')
input_anchors = tf.get_default_graph().get_tensor_by_name('input_anchors:0')
detections = tf.get_default_graph().get_tensor_by_name('mrcnn_detection/Reshape_1:0')
mrcnn_mask = tf.get_default_graph().get_tensor_by_name('mrcnn_mask/Sigmoid:0')
sessd=tf.Session(config=config,graph=detection_graph)
print('Loaded detection model from file "%s"' % model)
return sessd, input_image, input_image_meta, input_anchors, detections, mrcnn_mask
sessd, input_image, input_image_meta, input_anchors, detections, mrcnn_mask = load_detection_model(model_path)
results = model.detect_pb([image], sessd, input_image, input_image_meta, input_anchors, detections, mrcnn_mask,verbose=1)
use model, add to mrcnn/model.py
def detect_pb(self, images, sessd, input_image, input_image_meta, input_anchors, detections, mrcnn_mask, verbose=1):
"""Runs the detection pipeline.
images: List of images, potentially of different sizes.
Returns a list of dicts, one dict per image. The dict contains:
rois: [N, (y1, x1, y2, x2)] detection bounding boxes
class_ids: [N] int class IDs
scores: [N] float probability scores for the class IDs
masks: [H, W, N] instance binary masks
"""
assert self.mode == "inference", "Create model in inference mode."
assert len(
images) == self.config.BATCH_SIZE, "len(images) must be equal to BATCH_SIZE"
# if verbose:
# log("Processing {} images".format(len(images)))
# for image in images:
# log("image", image)
# Mold inputs to format expected by the neural network
molded_images, image_metas, windows = self.mold_inputs(images)
# Validate image sizes
# All images in a batch MUST be of the same size
image_shape = molded_images[0].shape
# print(image_shape, molded_images.shape)
for g in molded_images[1:]:
assert g.shape == image_shape,\
"After resizing, all images must have the same size. Check IMAGE_RESIZE_MODE and image sizes."
# Anchors
anchors = self.get_anchors(image_shape)
# Duplicate across the batch dimension because Keras requires it
# TODO: can this be optimized to avoid duplicating the anchors?
anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape)
# if verbose:
# log("molded_images", molded_images)
# log("image_metas", image_metas)
# log("anchors", anchors)
# Run object detection
# detections, _, _, mrcnn_mask, _, _, _ =\
# self.keras_model.predict([molded_images, image_metas, anchors], verbose=0)
detectionsed, mrcnn_masked = sessd.run([detections, mrcnn_mask], feed_dict = {input_image: molded_images, \
input_image_meta: image_metas, \
input_anchors: anchors})
mrcnn_masked = np.expand_dims(mrcnn_masked, 0)
detections = np.array(detectionsed)
mrcnn_mask = np.array(mrcnn_masked)
# Process detections
results = []
for i, image in enumerate(images):
xi = detections[i]
yi = mrcnn_mask[i]
moldedi = molded_images[i]
windowsi = windows[i]
final_rois, final_class_ids, final_scores, final_masks =\
self.unmold_detections(detections[i], mrcnn_mask[i],
image.shape, molded_images[i].shape,
windows[i])
results.append({
"rois": final_rois,
"class_ids": final_class_ids,
"scores": final_scores,
"masks": final_masks,
})
return results
Now that we have our pb file and our pbtxt file what do we do? How can we deploy this as tf serving model?
@ArashHosseini got this error ModuleNotFoundError Traceback (most recent call last)
@Jeffin21 the code is looking for this file pls re-parent the config file so the code can find the module
@ArashHosseini could you tell me where can i find the pipeline.config? i made a custom dataset and trained but i couldn't find the pipeline.config to generate the pbtxt file to loading to opencv dnn
@moorage @waleedka @haeric @rymalia @PavlosMelissinos @karanchahal