Open msson opened 6 years ago
I tried to solve this prob for two days please help me thanks!
You need to pass the path to coco as the --dataset
argument,
/path/to/coco/
has to become /home/mson/download/Mask_RCNN/coco
, which gives you
python coco.py train --dataset=/home/mson/download/Mask_RCNN/coco --model=coco
You do not think coco will magically find your dataset, right?
@msson , As @monomon said, that is the right way to pass coco data set, if it still failed. You need to remove the json file manually and let the script download again.
Another potential issue if you give --dataset=~/<path>
, it won't work as it is unable to expand '~' to /home/user/
.
You will find the json file from here Download and add it in the given location
Hi,
I am trying to train for coco2014 dataset. (I just followed this repo's training example)
I put coco dataset on home/mson/download/Mask_RCNN/coco/train2014/(image files..) home/mson/download/Mask_RCNN/coco/val2014/(image files..) home/mson/download/Mask_RCNN/coco/annotations/(.json files including 'instances_train2014.json')
The command I am using is: python coco.py train --dataset=/path/to/coco/ --model=coco
The result I can see is that FileNotFoundError: [Errno 2] No such file or directory: '/path/to/coco/annotations /instances_train2014.json'
Can anyone please help? Please see the logs below.
/home/mson/anaconda3/envs/tf/lib/python3.6/site-packages/h5py/init.py:36: FutureWarning: Conversion of the second argument of issubdtype from
float
tonp.floating
is deprecated. In future, it will be treated asnp.float64 == np.dtype(float).type
. from ._conv import register_converters as _register_converters Using TensorFlow backend. Command: train Model: coco Dataset: /path/to/coco/ Year: 2014 Logs: /home/mson/download/Mask_RCNN/logs Auto Download: FalseConfigurations: BACKBONE_SHAPES [[256 256] [128 128] [ 64 64] [ 32 32] [ 16 16]] BACKBONE_STRIDES [4, 8, 16, 32, 64] BATCH_SIZE 2 BBOX_STD_DEV [0.1 0.1 0.2 0.2] DETECTION_MAX_INSTANCES 100 DETECTION_MIN_CONFIDENCE 0.7 DETECTION_NMS_THRESHOLD 0.3 GPU_COUNT 1 IMAGES_PER_GPU 2 IMAGE_MAX_DIM 1024 IMAGE_MIN_DIM 800 IMAGE_PADDING True IMAGE_SHAPE [1024 1024 3] LEARNING_MOMENTUM 0.9 LEARNING_RATE 0.001 MASK_POOL_SIZE 14 MASK_SHAPE [28, 28] MAX_GT_INSTANCES 100 MEAN_PIXEL [123.7 116.8 103.9] MINI_MASK_SHAPE (56, 56) NAME coco NUM_CLASSES 81 POOL_SIZE 7 POST_NMS_ROIS_INFERENCE 1000 POST_NMS_ROIS_TRAINING 2000 ROI_POSITIVE_RATIO 0.33 RPN_ANCHOR_RATIOS [0.5, 1, 2] RPN_ANCHOR_SCALES (32, 64, 128, 256, 512) RPN_ANCHOR_STRIDE 1 RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2] RPN_NMS_THRESHOLD 0.7 RPN_TRAIN_ANCHORS_PER_IMAGE 256 STEPS_PER_EPOCH 1000 TRAIN_ROIS_PER_IMAGE 200 USE_MINI_MASK True USE_RPN_ROIS True VALIDATION_STEPS 50 WEIGHT_DECAY 0.0001
Loading weights /home/mson/download/Mask_RCNN/mask_rcnn_coco.h5 2018-02-09 16:07:30.877009: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA 2018-02-09 16:07:31.080556: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:895] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2018-02-09 16:07:31.080894: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1105] Found device 0 with properties: name: Quadro K5200 major: 3 minor: 5 memoryClockRate(GHz): 0.771 pciBusID: 0000:02:00.0 totalMemory: 7.93GiB freeMemory: 7.51GiB 2018-02-09 16:07:31.080922: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1195] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: Quadro K5200, pci bus id: 0000:02:00.0, compute capability: 3.5) loading annotations into memory... Traceback (most recent call last): File "coco.py", line 476, in
dataset_train.load_coco(args.dataset, "train", year=args.year, auto_download=args.download)
File "coco.py", line 108, in loadcoco
coco = COCO("{}annotations/instances{}{}.json".format(dataset_dir, subset, year))
File "/home/mson/anaconda3/envs/tf/lib/python3.6/site-packages/pycocotools/coco.py", line 79, in init
dataset = json.load(open(annotation_file, 'r'))
FileNotFoundError: [Errno 2] No such file or directory: '/path/to/coco/annotations/instances_train2014.json'