Open Basma-hash opened 3 years ago
@Basma-hash, part my code for run on GPU:
import os
import warnings
import mrcnn.model as modellib
import tensorflow as tf
from keras import backend as K
from mrcnn.config import Config
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=per_process_gpu_memory)
cfg = tf.compat.v1.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)
sess = tf.compat.v1.Session(config=cfg)
K.set_session(sess)
class CustomConfig(Config):
GPU_COUNT = 1
IMAGES_PER_GPU = 1
NUM_CLASSES = 1 + 1
NAME = "balloon"
STEPS_PER_EPOCH = 100
DETECTION_MIN_CONFIDENCE = 0.9
with tf.device('/job:localhost/replica:0/task:0/device:GPU:0'):
rcnn = modellib.MaskRCNN(mode='inference', model_dir=MODEL_DIR,
config=CustomConfig())
rcnn.load_weights(MODEL_DIR, by_name=True)
graph = tf.get_default_graph()
I hope is help
Check your tensorflow version with pip freeze
.
Then, uninstall tensorflow
and install tensorflow-gpu
.
For example:
pip uninstall tensorflow
pip install tensorflow-gpu==x.y.z
Replace x.y.z
with the version that was printed in pip freeze
for tensorflow.
I recommend you to do this in a virtual environment.
Hello Everyone, I would like to run my code on GPU instead of CPU anyone can help me please?