Closed haroonchoudery closed 6 years ago
I accomplished this by using the following function:
def to_mot_format(frame_idx, coord):
"""
Input coordinates:
(y1, x1, y2, x2)
Output coordinates:
(frame, id, bb_left, bb_top, bb_width, bb_height, -1, -1, -1, -1)
"""
padding = np.array([-1, -1, -1, -1])
coord = np.insert(coord, 0, frame_idx)
coord = np.insert(coord, 1, -1)
coord = np.append(coord, padding)
width = coord[5] - coord[3]
height = coord[4] - coord[2]
coord[4] = width
coord[5] = height
# Rearrange coordinates
coord = coord[[0, 1, 3, 2, 4, 5, 6, 7, 8, 9]]
Thanks for sharing. Closing the issue.
I understand that the ROI outputs for each detected object correspond to [y1, x1, y2, x2]. I would like to convert the outputs to MOT Challenge format so that I can use the detections for an object detection task (using DeepSORT). The MOT Challenge format is described here: https://motchallenge.net/instructions/
<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, <x>, <y>, <z>