maum-ai / faceshifter

Unofficial PyTorch Implementation for FaceShifter (https://arxiv.org/abs/1912.13457)
BSD 3-Clause "New" or "Revised" License
610 stars 114 forks source link

DeepFace #31

Open Eiros31 opened 7 months ago

Eiros31 commented 7 months ago

"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets.

It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. """ import random import numpy as np import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms from abc import ABC, abstractmethod

class BaseDataset(data.Dataset, ABC): """This class is an abstract base class (ABC) for datasets.

To create a subclass, you need to implement the following four functions:
-- <__init__>:                      initialize the class, first call BaseDataset.__init__(self, opt).
-- <__len__>:                       return the size of dataset.
-- <__getitem__>:                   get a data point.
-- <modify_commandline_options>:    (optionally) add dataset-specific options and set default options.
"""

def __init__(self, opt):
    """Initialize the class; save the options in the class

    Parameters:
        opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
    """
    self.opt = opt
    # self.root = opt.dataroot
    self.current_epoch = 0

@staticmethod
def modify_commandline_options(parser, is_train):
    """Add new dataset-specific options, and rewrite default values for existing options.

    Parameters:
        parser          -- original option parser
        is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.

    Returns:
        the modified parser.
    """
    return parser

@abstractmethod
def __len__(self):
    """Return the total number of images in the dataset."""
    return 0

@abstractmethod
def __getitem__(self, index):
    """Return a data point and its metadata information.

    Parameters:
        index - - a random integer for data indexing

    Returns:
        a dictionary of data with their names. It ususally contains the data itself and its metadata information.
    """
    pass

def get_transform(grayscale=False): transform_list = [] if grayscale: transform_list.append(transforms.Grayscale(1)) transform_list += [transforms.ToTensor()] return transforms.Compose(transform_list)

def get_affine_mat(opt, size): shift_x, shift_y, scale, rot_angle, flip = 0., 0., 1., 0., False w, h = size

if 'shift' in opt.preprocess:
    shift_pixs = int(opt.shift_pixs)
    shift_x = random.randint(-shift_pixs, shift_pixs)
    shift_y = random.randint(-shift_pixs, shift_pixs)
if 'scale' in opt.preprocess:
    scale = 1 + opt.scale_delta * (2 * random.random() - 1)
if 'rot' in opt.preprocess:
    rot_angle = opt.rot_angle * (2 * random.random() - 1)
    rot_rad = -rot_angle * np.pi/180
if 'flip' in opt.preprocess:
    flip = random.random() > 0.5

shift_to_origin = np.array([1, 0, -w//2, 0, 1, -h//2, 0, 0, 1]).reshape([3, 3])
flip_mat = np.array([-1 if flip else 1, 0, 0, 0, 1, 0, 0, 0, 1]).reshape([3, 3])
shift_mat = np.array([1, 0, shift_x, 0, 1, shift_y, 0, 0, 1]).reshape([3, 3])
rot_mat = np.array([np.cos(rot_rad), np.sin(rot_rad), 0, -np.sin(rot_rad), np.cos(rot_rad), 0, 0, 0, 1]).reshape([3, 3])
scale_mat = np.array([scale, 0, 0, 0, scale, 0, 0, 0, 1]).reshape([3, 3])
shift_to_center = np.array([1, 0, w//2, 0, 1, h//2, 0, 0, 1]).reshape([3, 3])

affine = shift_to_center @ scale_mat @ rot_mat @ shift_mat @ flip_mat @ shift_to_origin    
affine_inv = np.linalg.inv(affine)
return affine, affine_inv, flip

def apply_img_affine(img, affine_inv, method=Image.BICUBIC): return img.pil2tensor_transform(img.size, Image.AFFINE, data=affine_inv.flatten()[:6], resample=Image.BICUBIC)

def apply_lmaffine(landmark, affine, flip, size): , h = size lm = landmark.copy() lm[:, 1] = h - 1 - lm[:, 1] lm = np.concatenate((lm, np.ones([lm.shape[0], 1])), -1) lm = lm @ np.transpose(affine) lm[:, :2] = lm[:, :2] / lm[:, 2:] lm = lm[:, :2] lm[:, 1] = h - 1 - lm[:, 1] if flip: lm = lm.copy() lm[:17] = lm[16::-1] lm[17:22] = lm[26:21:-1] lm[22:27] = lm[21:16:-1] lm[31:36] = lm[35:30:-1] lm[36:40] = lm[45:41:-1] lm[40:42] = lm[47:45:-1] lm[42:46] = lm[39:35:-1] lm[46:48] = lm[41:39:-1] lm[48:55] = lm[54:47:-1] lm[55:60] = lm[59:54:-1] lm[60:65] = lm[64:59:-1] lm[65:68] = lm[67:64:-1] lm = lm return lm