Hi,
I am not sure if the weights that correspond to the pretrain network
have som problem or if I made an error in the small pipeline, but the
results from the autoencoder seems very bad when I run sample.py:
First I preprocessed the data for 500k molecules
python2 preprocess.py data/smiles_500k.h5 data/processed_500.h5
which created a file of about 13G (processed_500.h5)
then I run:
python2 sample.py data/processed_500.h5 data/model_500k.h5 --target autoencoder
And I get:
CCOC(=O)CSC1=NC(=O)N2C=CC(=CC2=N1)C
S.+[SSSSS+[.(b..FFFFFFFFF(F%(F%FFF%%FFF
Hi, I am not sure if the weights that correspond to the pretrain network have som problem or if I made an error in the small pipeline, but the results from the autoencoder seems very bad when I run sample.py:
First I preprocessed the data for 500k molecules python2 preprocess.py data/smiles_500k.h5 data/processed_500.h5 which created a file of about 13G (processed_500.h5) then I run: python2 sample.py data/processed_500.h5 data/model_500k.h5 --target autoencoder
And I get: CCOC(=O)CSC1=NC(=O)N2C=CC(=CC2=N1)C S.+[SSSSS+[.(b..FFFFFFFFF(F%(F%FFF%%FFF