we use our data to finetune with pretrained dtu model, our data used the same format as DTU.
but we get some error when training
-- Process 0 terminated with the following error:
Traceback (most recent call last):
File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 74, in _wrap
fn(i, args)
File "/root/autodl-tmp/code/MVSFormerPlusPlus/train.py", line 206, in main
trainer.train()
File "/root/autodl-tmp/code/MVSFormerPlusPlus/base/base_trainer.py", line 79, in train
result = self._train_epoch(epoch)
File "/root/autodl-tmp/code/MVSFormerPlusPlus/trainer/mvsformer_trainer.py", line 176, in _train_epoch
self.scaler.step(self.optimizer)
File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py", line 416, in step
retval = self._maybe_opt_step(optimizer, optimizer_state, args, kwargs)
File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py", line 315, in _maybe_opt_step
retval = optimizer.step(*args, *kwargs)
File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/lr_scheduler.py", line 68, in wrapper
return wrapped(args, kwargs)
File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/optimizer.py", line 373, in wrapper
out = func(*args, *kwargs)
File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/optimizer.py", line 76, in _use_grad
ret = func(self, args, **kwargs)
File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/adamw.py", line 184, in step
adamw(
File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/adamw.py", line 335, in adamw
func(
File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/adamw.py", line 540, in _multi_tensor_adamw
torch._foreachlerp(device_exp_avgs, device_grads, 1 - beta1)
RuntimeError: The size of tensor a (64) must match the size of tensor b (768) at non-singleton dimension 0
Do you have any suggestions that can help us solve this problem? Or how to finetune data similar to DTU
we use our data to finetune with pretrained dtu model, our data used the same format as DTU. but we get some error when training
-- Process 0 terminated with the following error: Traceback (most recent call last): File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 74, in _wrap fn(i, args) File "/root/autodl-tmp/code/MVSFormerPlusPlus/train.py", line 206, in main trainer.train() File "/root/autodl-tmp/code/MVSFormerPlusPlus/base/base_trainer.py", line 79, in train result = self._train_epoch(epoch) File "/root/autodl-tmp/code/MVSFormerPlusPlus/trainer/mvsformer_trainer.py", line 176, in _train_epoch self.scaler.step(self.optimizer) File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py", line 416, in step retval = self._maybe_opt_step(optimizer, optimizer_state, args, kwargs) File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/cuda/amp/grad_scaler.py", line 315, in _maybe_opt_step retval = optimizer.step(*args, *kwargs) File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/lr_scheduler.py", line 68, in wrapper return wrapped(args, kwargs) File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/optimizer.py", line 373, in wrapper out = func(*args, *kwargs) File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/optimizer.py", line 76, in _use_grad ret = func(self, args, **kwargs) File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/adamw.py", line 184, in step adamw( File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/adamw.py", line 335, in adamw func( File "/root/miniconda3/envs/mvsformer/lib/python3.10/site-packages/torch/optim/adamw.py", line 540, in _multi_tensor_adamw torch._foreachlerp(device_exp_avgs, device_grads, 1 - beta1) RuntimeError: The size of tensor a (64) must match the size of tensor b (768) at non-singleton dimension 0
Do you have any suggestions that can help us solve this problem? Or how to finetune data similar to DTU