Closed robintibor closed 3 years ago
Have one suggestion how cropped decoding may be implementable in an easy way, and also some changes to model hyperparameters to make the version the same that I used in pathology detection
https://github.com/dengemann/meeg-brain-age-benchmark-paper/blob/1204bfda96c8f65c7067f705e5de1c844dea8b87/deep_learning_utils.py#L279-L284
model = ShallowFBCSPNet( in_chans=n_channels, n_classes=1, input_window_samples=None, final_conv_length=35, )
https://github.com/dengemann/meeg-brain-age-benchmark-paper/blob/1204bfda96c8f65c7067f705e5de1c844dea8b87/deep_learning_utils.py#L289-L293
model = Deep4Net( in_chans=n_channels, n_classes=1, input_window_samples=None, final_conv_length=1, stride_before_pool=True, )
https://github.com/dengemann/meeg-brain-age-benchmark-paper/blob/1204bfda96c8f65c7067f705e5de1c844dea8b87/deep_learning_utils.py#L299-L303
new_model.add_module("global_pool", nn.AdaptiveAvgPool1d(1)) new_model.add_module("squeeze2", Expression(squeeze_final_output))
Something like this may work without any further changes
I will implement cropped decoding as you suggested and add a flag to switch from trialwise to cropped mode for hyperparameter optimization.
Have one suggestion how cropped decoding may be implementable in an easy way, and also some changes to model hyperparameters to make the version the same that I used in pathology detection
https://github.com/dengemann/meeg-brain-age-benchmark-paper/blob/1204bfda96c8f65c7067f705e5de1c844dea8b87/deep_learning_utils.py#L279-L284
https://github.com/dengemann/meeg-brain-age-benchmark-paper/blob/1204bfda96c8f65c7067f705e5de1c844dea8b87/deep_learning_utils.py#L289-L293
https://github.com/dengemann/meeg-brain-age-benchmark-paper/blob/1204bfda96c8f65c7067f705e5de1c844dea8b87/deep_learning_utils.py#L299-L303
Something like this may work without any further changes