megvii-research / MOTR

[ECCV2022] MOTR: End-to-End Multiple-Object Tracking with TRansformer
Other
633 stars 93 forks source link

Command for training on BDD100K #45

Open ASMIftekhar opened 2 years ago

ASMIftekhar commented 2 years ago

Hello, Thanks a lot for your awesome work and congratulations for getting accepted at ECCV. I am planning to retrain the model on bdd100k dataset, in this script from motr_bdd100k branch, I can see multiple commented out commands. Can you confirm which one of these you actually use to train the model?

zyayoung commented 2 years ago

We are using the third config, i.e., r50.bdd100k_mot.20e. Sorry for causing confusion.

ASMIftekhar commented 2 years ago

Thanks a lot for the clarification.

ASMIftekhar commented 2 years ago

Hello, Do you have an estimate about the training time on bdd100k? It is showing one day per epoch with 8 GPUs!!

zyayoung commented 2 years ago

The total training time was 6d18h on 8 2080ti GPUs.

ASMIftekhar commented 2 years ago

Thanks for the response. I wanted to make sure my slow training is coming from my machine and not from setting up the pipeline. I use the following command for running the model: python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main.py \ --meta_arch motr \ --dataset_file bdd100k_mot \ --epoch 20 \ --with_box_refine \ --lr_drop 16 \ --save_period 2 \ --lr 2e-4 \ --lr_backbone 2e-5 \ --pretrained ${PRETRAIN} \ --output_dir ${EXP_DIR} \ --batch_size 1 \ --sample_mode 'random_interval' \ --sample_interval 4 \ --sampler_steps 6 12 \ --sampler_lengths 2 3 4 \ --update_query_pos \ --merger_dropout 0 \ --dropout 0 \ --random_drop 0.1 \ --fp_ratio 0.3 \ --track_embedding_layer 'AttentionMergerV4' \ --extra_track_attn \ --data_txt_path_train datasets/data_path/bdd100k.train \ --data_txt_path_val datasets/data_path/bdd100k.val \ --mot_path data/bdd100k/ While training I am seeing following logs: Epoch: [0] [ 20/34268] eta: 1 day, 4:52:33 lr: 0.000200 grad_norm: 33.51 loss: 12.0034 (13.1927) frame_0_aux0_loss_bbox: 0.0757 (0.0819) frame_0_aux0_loss_ce: 0.6567 (0.7296) frame_0_aux0_loss_giou: 0.3462 (0.3459) frame_0_aux1_loss_bbox: 0.0722 (0.0743) frame_0_aux1_loss_ce: 0.3879 (0.5191) frame_0_aux1_loss_giou: 0.3164 (0.3131) frame_0_aux2_loss_bbox: 0.0689 (0.0715) frame_0_aux2_loss_ce: 0.3761 (0.5060) frame_0_aux2_loss_giou: 0.3073 (0.3021) frame_0_aux3_loss_bbox: 0.0704 (0.0708) frame_0_aux3_loss_ce: 0.3945 (0.5072) frame_0_aux3_loss_giou: 0.3022 (0.2992) frame_0_aux4_loss_bbox: 0.0674 (0.0691) frame_0_aux4_loss_ce: 0.4496 (0.5385) frame_0_aux4_loss_giou: 0.2945 (0.2969) frame_0_loss_bbox: 0.0673 (0.0691) frame_0_loss_ce: 0.4790 (0.5634) frame_0_loss_giou: 0.2947 (0.2960) frame_1_aux0_loss_bbox: 0.1989 (0.1953) frame_1_aux0_loss_ce: 0.6516 (0.7257) frame_1_aux0_loss_giou: 0.5459 (0.5317) frame_1_aux1_loss_bbox: 0.1954 (0.1897) frame_1_aux1_loss_ce: 0.4233 (0.5472) frame_1_aux1_loss_giou: 0.5211 (0.5116) frame_1_aux2_loss_bbox: 0.1952 (0.1894) frame_1_aux2_loss_ce: 0.4143 (0.5164) frame_1_aux2_loss_giou: 0.5061 (0.5071) frame_1_aux3_loss_bbox: 0.1958 (0.1895) frame_1_aux3_loss_ce: 0.4043 (0.5034) frame_1_aux3_loss_giou: 0.5039 (0.5071) frame_1_aux4_loss_bbox: 0.1966 (0.1894) frame_1_aux4_loss_ce: 0.4149 (0.5069) frame_1_aux4_loss_giou: 0.5008 (0.5064) frame_1_loss_bbox: 0.1986 (0.1894) frame_1_loss_ce: 0.4315 (0.5273) frame_1_loss_giou: 0.5012 (0.5059) time: 2.9063 data: 0.6959 max mem: 5583 Does it look ok to you?

ASMIftekhar commented 2 years ago

Also, if you have it, can you provide the log file for your training on bdd100K?

lebron-2016 commented 11 months ago

Thanks for the response. I wanted to make sure my slow training is coming from my machine and not from setting up the pipeline. I use the following command for running the model: python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main.py \ --meta_arch motr \ --dataset_file bdd100k_mot \ --epoch 20 \ --with_box_refine \ --lr_drop 16 \ --save_period 2 \ --lr 2e-4 \ --lr_backbone 2e-5 \ --pretrained ${PRETRAIN} \ --output_dir ${EXP_DIR} \ --batch_size 1 \ --sample_mode 'random_interval' \ --sample_interval 4 \ --sampler_steps 6 12 \ --sampler_lengths 2 3 4 \ --update_query_pos \ --merger_dropout 0 \ --dropout 0 \ --random_drop 0.1 \ --fp_ratio 0.3 \ --track_embedding_layer 'AttentionMergerV4' \ --extra_track_attn \ --data_txt_path_train datasets/data_path/bdd100k.train \ --data_txt_path_val datasets/data_path/bdd100k.val \ --mot_path data/bdd100k/ While training I am seeing following logs: Epoch: [0] [ 20/34268] eta: 1 day, 4:52:33 lr: 0.000200 grad_norm: 33.51 loss: 12.0034 (13.1927) frame_0_aux0_loss_bbox: 0.0757 (0.0819) frame_0_aux0_loss_ce: 0.6567 (0.7296) frame_0_aux0_loss_giou: 0.3462 (0.3459) frame_0_aux1_loss_bbox: 0.0722 (0.0743) frame_0_aux1_loss_ce: 0.3879 (0.5191) frame_0_aux1_loss_giou: 0.3164 (0.3131) frame_0_aux2_loss_bbox: 0.0689 (0.0715) frame_0_aux2_loss_ce: 0.3761 (0.5060) frame_0_aux2_loss_giou: 0.3073 (0.3021) frame_0_aux3_loss_bbox: 0.0704 (0.0708) frame_0_aux3_loss_ce: 0.3945 (0.5072) frame_0_aux3_loss_giou: 0.3022 (0.2992) frame_0_aux4_loss_bbox: 0.0674 (0.0691) frame_0_aux4_loss_ce: 0.4496 (0.5385) frame_0_aux4_loss_giou: 0.2945 (0.2969) frame_0_loss_bbox: 0.0673 (0.0691) frame_0_loss_ce: 0.4790 (0.5634) frame_0_loss_giou: 0.2947 (0.2960) frame_1_aux0_loss_bbox: 0.1989 (0.1953) frame_1_aux0_loss_ce: 0.6516 (0.7257) frame_1_aux0_loss_giou: 0.5459 (0.5317) frame_1_aux1_loss_bbox: 0.1954 (0.1897) frame_1_aux1_loss_ce: 0.4233 (0.5472) frame_1_aux1_loss_giou: 0.5211 (0.5116) frame_1_aux2_loss_bbox: 0.1952 (0.1894) frame_1_aux2_loss_ce: 0.4143 (0.5164) frame_1_aux2_loss_giou: 0.5061 (0.5071) frame_1_aux3_loss_bbox: 0.1958 (0.1895) frame_1_aux3_loss_ce: 0.4043 (0.5034) frame_1_aux3_loss_giou: 0.5039 (0.5071) frame_1_aux4_loss_bbox: 0.1966 (0.1894) frame_1_aux4_loss_ce: 0.4149 (0.5069) frame_1_aux4_loss_giou: 0.5008 (0.5064) frame_1_loss_bbox: 0.1986 (0.1894) frame_1_loss_ce: 0.4315 (0.5273) frame_1_loss_giou: 0.5012 (0.5059) time: 2.9063 data: 0.6959 max mem: 5583 Does it look ok to you?

Hello, what are the CUDA version and the versions of torch and torchvision you used when training the BDD100K branch? I encountered this error during training, do you know the solution?

image

I have been troubled by this problem for many days and hope to get your help. Thanks!!