Closed yutao007 closed 2 years ago
Differences in model scaling could be part of the reason. Like, v6s has significantly higher flops than v5s.
目前yolov6s(其中的尺寸512,激活函数全部relu)训练到160epoth时候训练时间下降到20分钟左右,确实会比同尺寸yolov5s训练时间长一些。 Epoch iou_loss l1_loss obj_loss cls_loss 151/399 0.7007 0.3427 0.3506 0.3874: 100%|██████████| 69/69 [18:14<00:00, 15.86s/it]
Epoch iou_loss l1_loss obj_loss cls_loss
152/399 0.7041 0.3417 0.3491 0.3877: 100%|██████████| 69/69 [18:04<00:00, 15.71s/it]
Epoch iou_loss l1_loss obj_loss cls_loss
153/399 0.6964 0.3385 0.3442 0.3848: 100%|██████████| 69/69 [21:04<00:00, 18.33s/it]
Epoch iou_loss l1_loss obj_loss cls_loss
154/399 0.696 0.3402 0.3445 0.3845: 100%|██████████| 69/69 [18:22<00:00, 15.98s/it]
Epoch iou_loss l1_loss obj_loss cls_loss
155/399 0.6904 0.3372 0.346 0.383: 100%|██████████| 69/69 [18:04<00:00, 15.71s/it]
Epoch iou_loss l1_loss obj_loss cls_loss
156/399 0.6948 0.3353 0.3413 0.3842: 65%|██████▌ | 45/69 [10:55<05:11, 12.98s/it]
我这边也是同样的问题,请问有优化方案吗
我这边同样的数据集在yolov5下10多分钟一个epoch,但是在yolov6下目前跑出来的半小时多了一个epoch Epoch iou_loss l1_loss obj_loss cls_loss 1/399 2.364 1.948 4.324 1.474: 100%|██████████| 69/69 [14:52<00:00, 12.94s/it]