Open jmikedupont2 opened 4 months ago
Certainly! Let's plan out how to model a Mastodon feed system in Coq, then extract it to Rust for implementation. We'll start by modeling the core data structures and operations in Coq, then outline the process for extraction and implementation in Rust.
First, let's define some basic data structures and operations in Coq:
Require Import String List.
Open Scope string_scope.
(* Basic data types *)
Inductive UserId : Type :=
| MakeUserId : string -> UserId.
Inductive PostId : Type :=
| MakePostId : string -> PostId.
Inductive Post : Type :=
| MakePost : PostId -> UserId -> string -> list string -> Post.
(* Feed as a list of posts *)
Definition Feed := list Post.
(* Operations *)
Parameter create_post : UserId -> string -> list string -> Post.
Parameter add_to_feed : Feed -> Post -> Feed.
Parameter remove_from_feed : Feed -> PostId -> Feed.
Parameter get_user_feed : Feed -> UserId -> Feed.
(* API representation *)
Inductive APIResponse : Type :=
| Success : Feed -> APIResponse
| Error : string -> APIResponse.
(* Main feed operations *)
Definition fetch_feed (user: UserId) : APIResponse :=
(* Implementation would go here *)
Success nil.
Definition post_to_feed (user: UserId) (content: string) (tags: list string) : APIResponse :=
(* Implementation would go here *)
Success nil.
(* Theorems and proofs *)
Theorem add_then_remove : forall (f: Feed) (p: Post),
remove_from_feed (add_to_feed f p) (match p with MakePost id _ _ _ => id end) = f.
Proof.
(* Proof implementation *)
Admitted.
(* More theorems and proofs would be added here *)
After modeling the system in Coq, we'll need to set up the extraction to Rust. This process isn't straightforward as Coq doesn't have built-in Rust extraction. We'll need to:
a. Extract to OCaml first:
Extraction Language OCaml.
Extraction "mastodon_feed.ml" fetch_feed post_to_feed.
b. Manually translate the OCaml to Rust, or use a tool to assist in this translation.
In Rust, we'll create corresponding structures and implement the extracted functions:
use serde::{Serialize, Deserialize};
#[derive(Debug, Serialize, Deserialize)]
struct UserId(String);
#[derive(Debug, Serialize, Deserialize)]
struct PostId(String);
#[derive(Debug, Serialize, Deserialize)]
struct Post {
id: PostId,
user_id: UserId,
content: String,
tags: Vec<String>,
}
type Feed = Vec<Post>;
enum APIResponse {
Success(Feed),
Error(String),
}
fn create_post(user_id: UserId, content: String, tags: Vec<String>) -> Post {
Post {
id: PostId(uuid::Uuid::new_v4().to_string()),
user_id,
content,
tags,
}
}
fn add_to_feed(mut feed: Feed, post: Post) -> Feed {
feed.push(post);
feed
}
fn remove_from_feed(feed: Feed, post_id: PostId) -> Feed {
feed.into_iter().filter(|post| post.id != post_id).collect()
}
fn get_user_feed(feed: &Feed, user_id: &UserId) -> Feed {
feed.iter().filter(|post| post.user_id == *user_id).cloned().collect()
}
async fn fetch_feed(user: UserId) -> Result<APIResponse, Box<dyn std::error::Error>> {
// Implement API call to Mastodon here
Ok(APIResponse::Success(vec![]))
}
async fn post_to_feed(user: UserId, content: String, tags: Vec<String>) -> Result<APIResponse, Box<dyn std::error::Error>> {
// Implement API call to Mastodon here
Ok(APIResponse::Success(vec![]))
}
To actually implement the Mastodon feed functionality, you'll need to use a Mastodon API client for Rust. You can use a library like megalodon
or implement your own using reqwest
:
use megalodon::{Megalodon, MegalodonClient};
async fn fetch_real_feed(client: &MegalodonClient, user: UserId) -> Result<APIResponse, Box<dyn std::error::Error>> {
let response = client.get_home_timeline().await?;
let feed: Feed = response.into_iter().map(|status| {
Post {
id: PostId(status.id),
user_id: UserId(status.account.id),
content: status.content,
tags: status.tags.into_iter().map(|tag| tag.name).collect(),
}
}).collect();
Ok(APIResponse::Success(feed))
}
async fn post_to_real_feed(client: &MegalodonClient, user: UserId, content: String, tags: Vec<String>) -> Result<APIResponse, Box<dyn std::error::Error>> {
let status = client.post_status(content, None).await?;
Ok(APIResponse::Success(vec![Post {
id: PostId(status.id),
user_id: user,
content: status.content,
tags,
}]))
}
Finally, you should create tests in Rust to ensure that the implementation satisfies the properties proven in Coq. For example:
#[test]
fn test_add_then_remove() {
let mut feed = vec![];
let post = create_post(UserId("user1".to_string()), "content".to_string(), vec![]);
let post_id = post.id.clone();
feed = add_to_feed(feed, post);
feed = remove_from_feed(feed, post_id);
assert!(feed.is_empty());
}
This plan outlines the process of modeling a Mastodon feed system in Coq, extracting it to Rust, and implementing it with actual Mastodon API integration. The Coq model provides a formal specification and proofs of key properties, while the Rust implementation provides a practical, efficient implementation that can interact with real Mastodon instances.
@startuml actor "Data Analyst" as Hero participant "Current Analytics" as OW participant "Need for Mastodon Insights" as Call participant "Mastodon API Docs" as Mentor participant "API Authentication" as Threshold participant "Data Collection & Storage" as Tests participant "Data Processing Challenge" as Ordeal participant "Insights Dashboard" as Reward participant "User Feedback" as RoadBack participant "System Optimization" as Resurrection participant "Deployed Analytics Platform" as Return
Hero -> OW: evaluate_current_tools OW -> Call: identify_mastodon_analytics_gap Call -> Hero: propose_new_project Hero -> Call: initial_hesitation Call -> Hero: recognize_potential_impact Hero -> Mentor: study_mastodon_api Mentor -> Hero: gain_api_knowledge Hero -> Threshold: implement_oauth Threshold -> Tests: begin_data_collection Tests -> Hero: design_database_schema Tests -> Hero: handle_rate_limits Hero -> Ordeal: tackle_data_volume Ordeal -> Hero: implement_batch_processing Ordeal -> Hero: optimize_queries Ordeal -> Reward: create_visualization_tools Reward -> Hero: develop_dashboard Reward -> RoadBack: release_beta_version RoadBack -> Resurrection: analyze_performance_issues Resurrection -> Hero: refactor_and_optimize Resurrection -> Return: deploy_to_production Return -> Hero: monitor_and_maintain @enduml