Open frieda-huang opened 1 month ago
This is likely because we changed provider_id
to provider_type
and you are working from our recently updated code.
If you go to ~/.llama/builds/conda/my-local-stack-run.yaml
and edit it to replace provider_id
with provider_type
-- these errors should go away. Let me know if they don't.
I've got this error and changed the yaml like you said, but it didn't work.
Traceback (most recent call last): File "/home/jeremy/.conda/envs/llamastack-local/bin/llama", line 8, in
sys.exit(main()) File "/home/jeremy/.conda/envs/llamastack-local/lib/python3.10/site-packages/llama_stack/cli/llama.py", line 44, in main parser.run(args) File "/home/jeremy/.conda/envs/llamastack-local/lib/python3.10/site-packages/llama_stack/cli/llama.py", line 38, in run args.func(args) File "/home/jeremy/.conda/envs/llamastack-local/lib/python3.10/site-packages/llama_stack/cli/stack/run.py", line 79, in _run_stack_run_cmd config = StackRunConfig(**yaml.safe_load(f)) File "/home/jeremy/.conda/envs/llamastack-local/lib/python3.10/site-packages/pydantic/main.py", line 212, in init validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self) pydantic_core._pydantic_core.ValidationError: 7 validation errors for StackRunConfig api_providers.agents.GenericProviderConfig.provider_id Field required [type=missing, input_value={'provider_type': 'meta-r...a/runtime/kvstore.db'}}}, input_type=dict] For further information visit https://errors.pydantic.dev/2.9/v/missing api_providers.agents.PlaceholderProviderConfig.providers Field required [type=missing, input_value={'provider_type': 'meta-r...a/runtime/kvstore.db'}}}, input_type=dict] For further information visit https://errors.pydantic.dev/2.9/v/missing api_providers.telemetry.GenericProviderConfig.provider_id Field required [type=missing, input_value={'provider_type': 'meta-reference', 'config': {}}, input_type=dict] For further information visit https://errors.pydantic.dev/2.9/v/missing api_providers.telemetry.PlaceholderProviderConfig.providers Field required [type=missing, input_value={'provider_type': 'meta-reference', 'config': {}}, input_type=dict] For further information visit https://errors.pydantic.dev/2.9/v/missing routing_table.inference.0.provider_id Field required [type=missing, input_value={'provider_type': 'meta-r....2-11B-Vision-Instruct'}, input_type=dict] For further information visit https://errors.pydantic.dev/2.9/v/missing routing_table.memory.0.provider_id
This is likely because we changed
provider_id
toprovider_type
and you are working from our recently updated code.If you go to
~/.llama/builds/conda/my-local-stack-run.yaml
and edit it to replaceprovider_id
withprovider_type
-- these errors should go away. Let me know if they don't.
It looks like my-local-stack-run.yaml
already replaced provider_id
with provider_type
. This is my current file:
version: v1
built_at: '2024-10-02T21:59:35.960179'
image_name: my-local-stack
docker_image: null
conda_env: my-local-stack
apis_to_serve:
- models
- shields
- agents
- memory
- memory_banks
- safety
- inference
api_providers:
inference:
providers:
- remote::ollama
safety:
providers:
- meta-reference
agents:
provider_type: meta-reference
config:
persistence_store:
namespace: null
type: postgres
host: localhost
port: 5432
db: llamastack
user: llamastack-user
password: null
memory:
providers:
- meta-reference
telemetry:
provider_type: meta-reference
config: {}
routing_table:
inference:
- provider_type: remote::ollama
config:
host: localhost
port: 5000
routing_key: Meta-Llama3.1-8B-Instruct
safety:
- provider_type: meta-reference
config:
llama_guard_shield:
model: Llama-Guard-3-1B
excluded_categories: []
I also noticed that if I included Prompt-Guard-86M
in the previous step of llama stack configure my-local-stack
, it led to the error of Value error, Invalid model: Prompt-Guard-86M. Must be one of [] [type=value_error, input_value='Prompt-Guard-86M', input_type=str]
. As I further investigate, I found that CoreModelId
has no enum prompt_guard_86m
and safey_models()
also doesn't include the Model for prompt_guard_86m
.
@frieda-huang Looking into this. I know the issue about Prompt-Guard but the one about validation errors is stumping me since I cannot reproduce it yet.
Can you tell me what version of the llama-stack
package you are using?
@frieda-huang Looking into this. I know the issue about Prompt-Guard but the one about validation errors is stumping me since I cannot reproduce it yet.
Can you tell me what version of the
llama-stack
package you are using?
I'm using the latest version. I think the error was stem from this portion of the code:
class PromptGuardShieldConfig(BaseModel):
model: str = "Prompt-Guard-86M"
@validator("model")
@classmethod
def validate_model(cls, model: str) -> str:
permitted_models = [
m.descriptor()
for m in safety_models()
if m.core_model_id == CoreModelId.prompt_guard_86m
]
if model not in permitted_models:
raise ValueError(
f"Invalid model: {model}. Must be one of {permitted_models}"
)
return model
This is the original error message.
ERROR
llama stack configure my-local-stack
Could not find my-local-stack. Trying conda build name instead...
Configuring API `inference`...
=== Configuring provider `remote::ollama` for API inference...
Enter value for host (default: localhost) (required):
Enter value for port (required): 5000
> Please enter the supported model your provider has for inference: Meta-Llama3.
1-8B-Instruct
Configuring API `safety`...
=== Configuring provider `meta-reference` for API safety...
Do you want to configure llama_guard_shield? (y/n): y
Entering sub-configuration for llama_guard_shield:
Enter value for model (default: Llama-Guard-3-1B) (required):
Enter value for excluded_categories (default: []) (required):
Enter value for disable_input_check (default: False) (required):
Enter value for disable_output_check (default: False) (required):
Do you want to configure prompt_guard_shield? (y/n): y
Entering sub-configuration for prompt_guard_shield:
Enter value for model (default: Prompt-Guard-86M) (required):
Traceback (most recent call last):
File "/opt/anaconda3/envs/stack/bin/llama", line 8, in <module>
sys.exit(main())
File "/opt/anaconda3/envs/stack/lib/python3.10/site-packages/llama_stack/cli/llama.py", line 44, in main
parser.run(args)
File "/opt/anaconda3/envs/stack/lib/python3.10/site-packages/llama_stack/cli/llama.py", line 38, in run
args.func(args)
File "/opt/anaconda3/envs/stack/lib/python3.10/site-packages/llama_stack/cli/stack/configure.py", line 87, in _run_stack_configure_cmd
self._configure_llama_distribution(build_config, args.output_dir)
File "/opt/anaconda3/envs/stack/lib/python3.10/site-packages/llama_stack/cli/stack/configure.py", line 154, in _configure_llama_distribution
config = configure_api_providers(config, build_config.distribution_spec)
File "/opt/anaconda3/envs/stack/lib/python3.10/site-packages/llama_stack/distribution/configure.py", line 95, in configure_api_providers
cfg = prompt_for_config(config_type, existing)
File "/opt/anaconda3/envs/stack/lib/python3.10/site-packages/llama_stack/distribution/utils/prompt_for_config.py", line 201, in prompt_for_config
config_data[field_name] = prompt_for_config(nested_type, existing_value)
File "/opt/anaconda3/envs/stack/lib/python3.10/site-packages/llama_stack/distribution/utils/prompt_for_config.py", line 316, in prompt_for_config
return config_type(**config_data)
File "/opt/anaconda3/envs/stack/lib/python3.10/site-packages/pydantic/main.py", line 212, in __init__
validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self)
File "/opt/anaconda3/envs/stack/lib/python3.10/site-packages/pydantic/_internal/_decorators_v1.py", line 103, in wrapper2
return val2(value)
File "/opt/anaconda3/envs/stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/safety/config.py", line 56, in validate_model
permitted_models = [
File "/opt/anaconda3/envs/stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/safety/config.py", line 59, in <listcomp>
if m.core_model_id == CoreModelId.prompt_guard_86m
File "/opt/anaconda3/envs/stack/lib/python3.10/enum.py", line 437, in __getattr__
raise AttributeError(name) from None
AttributeError: prompt_guard_86m
After adding some code to the llama-models, llama stack configure
works!
I added Model
to sku_list.py
and prompt_guard_86m = "Prompt-Guard-86M"
to datatypes.py
Model(
core_model_id=CoreModelId.prompt_guard_86m,
is_default_variant=True,
description="Llama Prompt Guard 86M system safety model",
huggingface_repo="meta-llama/Prompt-Guard-86M",
arch_args={
"dim": 768,
"n_layers": 12,
"n_heads": 12,
"vocab_size": PROMPT_GUARD_86M_VOCAB_SIZE,
"norm_eps": 1e-07,
"use_scaled_rope": False,
},
pth_file_count=1,
)
I fixed this error now with https://github.com/meta-llama/llama-stack/commit/19ce6bf009a80dbc5ae269532b944e3579764fbd -- please pull again. However, this doesn't solve the validation error with provider_type vs provider_id you are seeing.
@frieda-huang @JeremyBickel I believe the error you are seeing with provider_id / provider_type is because of incompatibility between the published package and the repository code. What you are missing is something that's not quite well documented yet. When performing llama stack build
you should do it like this:
cd llama-stack/
LLAMA_STACK_DIR=$PWD llama stack build <other arguments>
This will make sure it will use your current llama-stack checkout as the source for your build and will pick up your changes.
@frieda-huang @JeremyBickel I believe the error you are seeing with provider_id / provider_type is because of incompatibility between the published package and the repository code. What you are missing is something that's not quite well documented yet. When performing
llama stack build
you should do it like this:cd llama-stack/ LLAMA_STACK_DIR=$PWD llama stack build <other arguments>
This will make sure it will use your current llama-stack checkout as the source for your build and will pick up your changes.
Thank you for the quick response! Am I doing this correctly?
LLAMA_STACK_DIR=$PWD llama stack build 1 err | took 18s | stack py | at 00:06:40
> Enter a name for your Llama Stack (e.g. my-local-stack): my-local-stack
> Enter the image type you want your Llama Stack to be built as (docker or conda): conda
Llama Stack is composed of several APIs working together. Let's configure the providers (implementations) you want to use for these APIs.
> Enter provider for the inference API: (default=meta-reference): remote::ollama
> Enter provider for the safety API: (default=meta-reference): meta-reference
> Enter provider for the agents API: (default=meta-reference): meta-reference
> Enter provider for the memory API: (default=meta-reference): meta-reference
> Enter provider for the telemetry API: (default=meta-reference): meta-reference
Traceback (most recent call last):
File "/opt/anaconda3/envs/stack/bin/llama", line 8, in <module>
sys.exit(main())
File "/Users/friedahuang/local/llama-stack/llama_stack/cli/llama.py", line 44, in main
parser.run(args)
File "/Users/friedahuang/local/llama-stack/llama_stack/cli/llama.py", line 38, in run
args.func(args)
File "/Users/friedahuang/local/llama-stack/llama_stack/cli/stack/build.py", line 257, in _run_stack_build_command
providers_for_api = all_providers[api]
KeyError: <Api.inspect: 'inspect'>
Sorry, pull again please. https://github.com/meta-llama/llama-stack/commit/988a9cada3e7ea296611e20facdd2990f9512b2a
Sorry, pull again please. 988a9ca
llama stack build
works, but llama stack run my-local-stack
fails. Looks like it's something related to Ollama. I'm currently using version 0.3.6.
llama stack run my-local-stack ok | stack py | at 00:20:40
Resolved 8 providers in topological order
Api.models: routing_table
Api.inference: router
Api.shields: routing_table
Api.safety: router
Api.memory_banks: routing_table
Api.memory: router
Api.agents: meta-reference
Api.telemetry: meta-reference
Initializing Ollama, checking connectivity to server...
Traceback (most recent call last):
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/server/server.py", line 351, in <module>
fire.Fire(main)
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 135, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 468, in _Fire
component, remaining_args = _CallAndUpdateTrace(
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 684, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/server/server.py", line 288, in main
impls, specs = asyncio.run(resolve_impls_with_routing(config))
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/asyncio/runners.py", line 44, in run
return loop.run_until_complete(main)
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
return future.result()
File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 104, in resolve_impls_with_routing
impl = await instantiate_provider(spec, deps, configs[api])
File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 174, in instantiate_provider
impl = await instantiate_provider(
File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 192, in instantiate_provider
impl = await fn(*args)
File "/Users/friedahuang/local/llama-stack/llama_stack/providers/adapters/inference/ollama/__init__.py", line 14, in get_adapter_impl
await impl.initialize()
File "/Users/friedahuang/local/llama-stack/llama_stack/providers/adapters/inference/ollama/ollama.py", line 48, in initialize
await self.client.ps()
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/ollama/_client.py", line 906, in ps
response = await self._request('GET', '/api/ps')
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/ollama/_client.py", line 488, in _request
raise ResponseError(e.response.text, e.response.status_code) from None
ollama._types.ResponseError
Error occurred in script at line: 42
Sorry, pull again please. 988a9ca
llama stack build
works, butllama stack run my-local-stack
fails. Looks like it's something related to Ollama. I'm currently using version 0.3.6.llama stack run my-local-stack ok | stack py | at 00:20:40 Resolved 8 providers in topological order Api.models: routing_table Api.inference: router Api.shields: routing_table Api.safety: router Api.memory_banks: routing_table Api.memory: router Api.agents: meta-reference Api.telemetry: meta-reference Initializing Ollama, checking connectivity to server... Traceback (most recent call last): File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/server/server.py", line 351, in <module> fire.Fire(main) File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 135, in Fire component_trace = _Fire(component, args, parsed_flag_args, context, name) File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 468, in _Fire component, remaining_args = _CallAndUpdateTrace( File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 684, in _CallAndUpdateTrace component = fn(*varargs, **kwargs) File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/server/server.py", line 288, in main impls, specs = asyncio.run(resolve_impls_with_routing(config)) File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/asyncio/runners.py", line 44, in run return loop.run_until_complete(main) File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete return future.result() File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 104, in resolve_impls_with_routing impl = await instantiate_provider(spec, deps, configs[api]) File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 174, in instantiate_provider impl = await instantiate_provider( File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 192, in instantiate_provider impl = await fn(*args) File "/Users/friedahuang/local/llama-stack/llama_stack/providers/adapters/inference/ollama/__init__.py", line 14, in get_adapter_impl await impl.initialize() File "/Users/friedahuang/local/llama-stack/llama_stack/providers/adapters/inference/ollama/ollama.py", line 48, in initialize await self.client.ps() File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/ollama/_client.py", line 906, in ps response = await self._request('GET', '/api/ps') File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/ollama/_client.py", line 488, in _request raise ResponseError(e.response.text, e.response.status_code) from None ollama._types.ResponseError Error occurred in script at line: 42
I am using the together inference and used the command told by @ashwinb. Still getting the same error of mismatch between provider_type and provider_id after editing the yaml file and running llama stack run
@cheesecake100201 I think you're on to something there. I removed a normal pip install and all the conda envs I had built up and pulled again fresh last night, and the Pydantic problem didn't show up.
Double-checking, I did 'rm ~/.local/bin/llama', 'pip uninstall llama-stack', 'git pull', 'pip install -e .', and 'llama stack build --list-templates'. It gave the error:
Traceback (most recent call last):
File "/home/jeremy/.local/bin/llama", line 8, in
Is that a known case or a new bug from the recent fix (or something else)?
EDIT: I skipped the conda step. I seem to have completely removed conda from my system last night.. With everything back in order, though, the error is similar:
Traceback (most recent call last):
File "/home/jeremy/.conda/envs/stack/bin/llama", line 8, in
19ce6bf
Sorry, pull again please. 988a9ca
llama stack build
works, butllama stack run my-local-stack
fails. Looks like it's something related to Ollama. I'm currently using version 0.3.6.llama stack run my-local-stack ok | stack py | at 00:20:40 Resolved 8 providers in topological order Api.models: routing_table Api.inference: router Api.shields: routing_table Api.safety: router Api.memory_banks: routing_table Api.memory: router Api.agents: meta-reference Api.telemetry: meta-reference Initializing Ollama, checking connectivity to server... Traceback (most recent call last): File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/server/server.py", line 351, in <module> fire.Fire(main) File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 135, in Fire component_trace = _Fire(component, args, parsed_flag_args, context, name) File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 468, in _Fire component, remaining_args = _CallAndUpdateTrace( File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 684, in _CallAndUpdateTrace component = fn(*varargs, **kwargs) File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/server/server.py", line 288, in main impls, specs = asyncio.run(resolve_impls_with_routing(config)) File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/asyncio/runners.py", line 44, in run return loop.run_until_complete(main) File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete return future.result() File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 104, in resolve_impls_with_routing impl = await instantiate_provider(spec, deps, configs[api]) File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 174, in instantiate_provider impl = await instantiate_provider( File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 192, in instantiate_provider impl = await fn(*args) File "/Users/friedahuang/local/llama-stack/llama_stack/providers/adapters/inference/ollama/__init__.py", line 14, in get_adapter_impl await impl.initialize() File "/Users/friedahuang/local/llama-stack/llama_stack/providers/adapters/inference/ollama/ollama.py", line 48, in initialize await self.client.ps() File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/ollama/_client.py", line 906, in ps response = await self._request('GET', '/api/ps') File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/ollama/_client.py", line 488, in _request raise ResponseError(e.response.text, e.response.status_code) from None ollama._types.ResponseError Error occurred in script at line: 42
Update: Turns out I needed to update the port number inside .llama/builds/conda/my-local-stack-run.yaml
and specify routing_key
to be "Llama3.1-8B-Instruct" for Ollama to work.
routing_table:
inference:
- provider_type: remote::ollama
config:
host: localhost
port: 5000
routing_key: Meta-Llama3.1-8B-Instruct
routing_table:
inference:
- provider_type: remote::ollama
config:
host: localhost
port: 11434
routing_key: Llama3.1-8B-Instruct
However, it's still not working due to AssertionError: Could not resolve model Prompt-Guard-86M
. In the llama_stack/providers/impls/meta_reference/safety/safety.py
, it requires the Prompt-Guard-86M
to not be None
def resolve_and_get_path(model_name: str) -> str:
model = resolve_model(model_name)
assert model is not None, f"Could not resolve model {model_name}"
model_dir = model_local_dir(model.descriptor())
return model_dir
llama stack run my-local-stack --port 11434
Resolved 8 providers in topological order
Api.models: routing_table
Api.inference: router
Api.shields: routing_table
Api.safety: router
Api.memory_banks: routing_table
Api.memory: router
Api.agents: meta-reference
Api.telemetry: meta-reference
Initializing Ollama, checking connectivity to server...
Traceback (most recent call last):
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/server/server.py", line 351, in <module>
fire.Fire(main)
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 135, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 468, in _Fire
component, remaining_args = _CallAndUpdateTrace(
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/site-packages/fire/core.py", line 684, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/server/server.py", line 288, in main
impls, specs = asyncio.run(resolve_impls_with_routing(config))
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/asyncio/runners.py", line 44, in run
return loop.run_until_complete(main)
File "/opt/anaconda3/envs/llamastack-my-local-stack/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
return future.result()
File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 104, in resolve_impls_with_routing
impl = await instantiate_provider(spec, deps, configs[api])
File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 174, in instantiate_provider
impl = await instantiate_provider(
File "/Users/friedahuang/local/llama-stack/llama_stack/distribution/resolver.py", line 192, in instantiate_provider
impl = await fn(*args)
File "/Users/friedahuang/local/llama-stack/llama_stack/providers/impls/meta_reference/safety/__init__.py", line 16, in get_provider_impl
await impl.initialize()
File "/Users/friedahuang/local/llama-stack/llama_stack/providers/impls/meta_reference/safety/safety.py", line 48, in initialize
model_dir = resolve_and_get_path(shield_cfg.model)
File "/Users/friedahuang/local/llama-stack/llama_stack/providers/impls/meta_reference/safety/safety.py", line 35, in resolve_and_get_path
assert model is not None, f"Could not resolve model {model_name}"
AssertionError: Could not resolve model Prompt-Guard-86M
Error occurred in script at line: 42
I then excluded the prompt guard. It looks like postgres
is not supported yet, as I got the NotImplementedError()
. Any idea as to when it will get implemented or should I go ahead code a version for it?
@frieda-huang Oh boy -- can you try https://github.com/meta-llama/llama-stack/pull/177 to see if your prompt guard troubles are over?
About postgres
-- what did you want postgres for?
@cheesecake100201 try updating the llama-stack
package (v0.0.38) and let me know if that fixes the issues for you
postgres
prompt guard
troubles are clear! Thank you!
About postgres
-- I'm using pgvector to store embeddings for agentic search.
I'm using
remote::ollama
andMeta-Llama3.1-8B-Instruct
.llama stack build my-local-stack
andllama stack configure my-local stack
ran without problem, but encountered pydantic error upon runningllama stack run my-local-stack
. Any ideas? I'm running it on Mac M2 using conda since docker doesn't work.