Closed zwang123 closed 2 months ago
With this definition, the axiom A2 is actually equivalent to the transitivity of addition, eqtrd 2792.
addition -> equality
A1 A kind of reflexivity for the congruence relation (TarskiGC)
TarskiGC -> TarskiG_C
A8 Lower dimension axiom (DimTarskiG≥‘2) A9 Upper dimension axiom (V ∖ (DimTarskiG≥‘3))
DimTarskiG≥‘2 -> converse(DimTarskiG≥)‘‘{2} (V ∖ (DimTarskiG≥‘3)) -> (V ∖ (converse(DimTarskiG≥)‘‘{3}))
I think I can do a quick fix to this.
addition -> equality
TarskiGC -> TarskiG_C
DimTarskiG≥‘2 -> converse(DimTarskiG≥)‘‘{2} (V ∖ (DimTarskiG≥‘3)) -> (V ∖ (converse(DimTarskiG≥)‘‘{3}))
I think I can do a quick fix to this.