Closed Qidian213 closed 5 years ago
@Qidian213 Mutual learning has been removed from AlignedReID++. If you want to reproduce the mutual learning, you can refer to https://github.com/huanghoujing/AlignedReID-Re-Production-Pytorch
Thanks ! I had did it by myself ,later may push a test result.
你好,我按着https://github.com/huanghoujing/AlignedReID-Re-Production-Pytorch思路做了deep mutual learning .使用resnet50 ,inceptionv4 两个模型,DukeMTMCreID数据集。发现个现象:单独训练时都能收敛,但是mutual learning时 1,只使用分类做mutual loss 时resnet50能收敛但最后效果不如单独训练时(测试rank-1 83%),inceptionv4 刚开始收敛大概15epochs后开始发散,发散到一定程度后稳定, 最后对resetnet50测试 rank-1 82.1% 。2,只使用global distance做mutual loss 时两个模型都能收敛最后测试resnet50 rank-1 80.0%,inceptionv4 rank-1 77.1%. 3, 使用分类和global distance 做mutual loss时,另个模型都能收敛,最后resnnet50 rank-1 79.5%,inceptionv4 75.2%.
请教问题,只使用分类做mutual loss 时 inceptionv4先收敛后发散的原因可能是什么? 或者对上述现象是否还有别的建议?
谢谢!
是不是inception的性能不行,mutual learning如果两个网络差距太大的话,网络会被带偏的。黄厚景的涨点结果也是在两个resent50上得到的吧。大概理解为一个大佬和一个猪队友一起组队,大佬也会被带崩。
祝好
罗浩 浙江大学
-----原始邮件----- 发件人:Singularity notifications@github.com 发送时间:2019-03-05 22:11:21 (星期二) 收件人: michuanhaohao/AlignedReID AlignedReID@noreply.github.com 抄送: "Hao Luo" haoluocsc@zju.edu.cn, Comment comment@noreply.github.com 主题: Re: [michuanhaohao/AlignedReID] About mutual learning (#18)
你好,我按着https://github.com/huanghoujing/AlignedReID-Re-Production-Pytorch思路做了deep mutual learning .使用resnet50 ,inceptionv4 两个模型,DukeMTMCreID数据集。发现个现象:单独训练时都能收敛,但是mutual learning时 1,只使用分类做mutual loss 时resnet50能收敛但最后效果不如单独训练时(测试rank-1 83%),inceptionv4 刚开始收敛大概15epochs后开始发散,发散到一定程度后稳定, 最后对resetnet50测试 rank-1 82.1% 。2,只使用global distance做mutual loss 时两个模型都能收敛最后测试resnet50 rank-1 80.0%,inceptionv4 rank-1 77.1%. 3, 使用分类和global distance 做mutual loss时,另个模型都能收敛,最后resnnet50 rank-1 79.5%,inceptionv4 75.2%.
请教问题,只使用分类做mutual loss 时 inceptionv4先收敛后发散的原因可能是什么? 或者对上述现象是否还有别的建议?
谢谢!
— You are receiving this because you commented. Reply to this email directly, view it on GitHub, or mute the thread.
谢谢,我再研究一下。
It seems that the code not include mutual learning when training , but i guess you should did it in paper. Would it be usable after paper be accepted ?Thanks !