Open liuslnlp opened 3 years ago
This is the evaluation result of the medium model and the large model. It can be seen that the gap between NIST/BLEU/DIST and the official results is relatively large.
NIST: [3.6142, 4.1402, 4.2257, 4.2379] BLEU: [0.5054, 0.2272, 0.1161, 0.0658] METEOR: 0.11448456319410923 Entropy: [5.110969324425441, 7.4741025550415054, 8.487332812728265, 8.96638167676112] Distinct: [0.063865246873529, 0.2401520577378657] avg_len: 13.1005
NIST: [3.9302, 4.5571, 4.6678, 4.6848] BLEU: [0.5454, 0.2555, 0.1352, 0.0788] METEOR: 0.11694036328599848 Entropy: [5.376659255260651, 8.038661195818934, 9.129731989024675, 9.630095839832428] Distinct: [0.07617776246662647, 0.29050042408821036] avg_len: 11.611
Experiment | NIST2 | NIST4 | BLEU2 | BLEU4 | METEOR | ENT-4 | DIST-1 | DIST-2 | Avg. Len |
---|---|---|---|---|---|---|---|---|---|
Human response | 3.41 | 4.25 | 17.90% | 7.48% | 10.64% | 11 | 14.50% | 63.00% | 13.1 |
DialoGPT 117M | 2.39 | 2.41 | 10.54% | 1.55% | 7.53% | 10.78 | 8.60% | 39.90% | 12.8 |
DialoGPT 345M | 3 | 3.06 | 16.96% | 4.56% | 9.81% | 9.13 | 6.80% | 26.30% | 12.2 |
DialoGPT 762M | 2.84 | 2.9 | 18.66% | 5.25% | 9.66% | 9.72 | 7.76% | 29.93% | 11.2 |
I first extract contexts from
test.refs.txt
(6000 lines)cat test.refs.txt | cut -f 1 > test.source
and extract multi ref files (use up to 15 per sample)
for (( i=2; i<=15; i++ )) do cat test.refs.txt | cut -f $i > refs/ref_$i.txt done
Then use the following script to predict the responses on 6k multi-ref dataset.
from transformers import AutoModelForCausalLM, AutoTokenizer import torch from nltk import word_tokenize from tqdm import tqdm, trange model_path = '/path/to/DialoGPT-small' file_path = '/path/to/test.source' out_path = '/path/to/gpt_test.txt' tokenizer = AutoTokenizer.from_pretrained(model_path) tokenizer.padding_side = "left" SEP = tokenizer.eos_token tokenizer.add_special_tokens({'pad_token': SEP}) model = AutoModelForCausalLM.from_pretrained(model_path) model.eval() batch_size = 64 # read context lines = [] with open(file_path, encoding='utf-8') as f: for line in f: new_line = SEP.join(line.strip().split(' EOS ')[-5:]) + SEP lines.append(new_line) preds = [] # predict for i in trange(0, len(lines), batch_size): batchs = lines[i:i+batch_size] batch_encoding = tokenizer.batch_encode_plus( batchs, max_length=256, padding=True, truncation=True, return_tensors="pt", ) input_ids = batch_encoding['input_ids'] attention_mask = batch_encoding['attention_mask'] dyn_seq_len = input_ids.shape[1] preds_ids = model.generate(input_ids, attention_mask=attention_mask, max_length=512, num_beams=1, pad_token_id=tokenizer.eos_token_id) preds_ids = preds_ids[:, dyn_seq_len:].tolist() batch_preds = [tokenizer.decode(ids, skip_special_tokens=True) for ids in preds_ids] preds.extend(batch_preds) # write predictions with open(out_path, 'w', encoding='utf-8') as f: for pred in preds: line = ' '.join(word_tokenize(pred)) + '\n' f.write(line)
But there is a big gap between the evaluation results and those described in the paper.
My evaluation results
NIST: [3.372, 3.7761, 3.8364, 3.8455] BLEU: [0.4679, 0.1924, 0.0928, 0.0505] METEOR: 0.10545417931305287 Entropy: [4.9949875062421425, 7.123308932861081, 8.000309028686685, 8.413536358302238] Distinct: [0.0619184959030736, 0.22404933196300103] avg_len: 13.811166666666667
Described in paper
Experiment NIST2 NIST4 BLEU2 BLEU4 METEOR ENT-4 DIST-1 DIST-2 Avg. Len DialoGPT 117M 2.39 2.41 10.54% 1.55% 7.53% 10.78 8.60% 39.90% 12.8 Here are predictions of the first 20 test samples:
I 'm not fasting , I 'm fasting because I 'm fasting . I 'm waiting for someone to say something stupid and then I can see it over a r iamverysmart I 'm not sure if I should be excited or scared . I 'm going to be a millionaire by the end of this . I love this post and the art . Do I 40 love it ? Well it does come framed , and it 's so absurd ... idk I just might . I 'm not sure I trust him . I have a few of those . I 'll have to check out the other ones . I 'm watching the Oilers game on TV . How hard is it to play snooker ? Deshaun Watson is playing tonight . What was your time ? Artie Burns What 's a screwdriver ? I 'm not sure if I 'm missing something , but I do n't get it . I think it 's a title defense . I 'm not sure if it 's free , but I 've been to a few parks and they 're pretty cool . I 'm not sure what you 're trying to say . I 'm not sure what you 're trying to say . I have the most chromosomes . John Wick .
Hello! Could you share the evaluation code you used, please?
The evaluation code is almost the same as the official.
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import re
from collections import defaultdict
import argparse
from pathlib import Path
import os, time, subprocess, io, sys, re, argparse
import numpy as np
py_version = sys.version.split('.')[0]
if py_version == '2':
open = io.open
else:
unicode = str
def makedirs(fld):
if not os.path.exists(fld):
os.makedirs(fld)
cur_dir = str(Path(__file__).parent)
def str2bool(s):
# to avoid issue like this: https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
if s.lower() in ['t','true','1','y']:
return True
elif s.lower() in ['f','false','0','n']:
return False
else:
raise ValueError
def calc_nist_bleu(path_refs, path_hyp, fld_out='temp', n_lines=None):
# call mteval-v14c.pl
# ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v14c.pl
# you may need to cpan install XML:Twig Sort:Naturally String:Util
makedirs(fld_out)
if n_lines is None:
n_lines = len(open(path_refs[0], encoding='utf-8').readlines())
# import pdb; pdb.set_trace()
_write_xml([''], fld_out + '/src.xml', 'src', n_lines=n_lines)
_write_xml([path_hyp], fld_out + '/hyp.xml', 'hyp')#, n_lines=n_lines)
_write_xml(path_refs, fld_out + '/ref.xml', 'ref')#, n_lines=n_lines)
time.sleep(1)
cmd = [
'perl',f'{cur_dir}/mteval-v14c.pl',
'-s', '%s/src.xml'%fld_out,
'-t', '%s/hyp.xml'%fld_out,
'-r', '%s/ref.xml'%fld_out,
]
process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
# import pdb; pdb.set_trace()
output, error = process.communicate()
lines = output.decode().split('\n')
try:
nist = lines[-6].strip('\r').split()[1:5]
bleu = lines[-4].strip('\r').split()[1:5]
return [float(x) for x in nist], [float(x) for x in bleu]
except Exception:
print('mteval-v14c.pl returns unexpected message')
print('cmd = '+str(cmd))
print(output.decode())
print(error.decode())
return [-1]*4, [-1]*4
def calc_cum_bleu(path_refs, path_hyp):
# call multi-bleu.pl
# https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
# the 4-gram cum BLEU returned by this one should be very close to calc_nist_bleu
# however multi-bleu.pl doesn't return cum BLEU of lower rank, so in nlp_metrics we preferr calc_nist_bleu
# NOTE: this func doesn't support n_lines argument and output is not parsed yet
process = subprocess.Popen(
['perl', f'{cur_dir}/multi-bleu.perl'] + path_refs,
stdout=subprocess.PIPE,
stdin=subprocess.PIPE
)
with open(path_hyp, encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
process.stdin.write(line.encode())
output, error = process.communicate()
return output.decode()
def calc_meteor(path_refs, path_hyp, fld_out='temp', n_lines=None, pretokenized=True):
# Call METEOR code.
# http://www.cs.cmu.edu/~alavie/METEOR/index.html
makedirs(fld_out)
path_merged_refs = fld_out + '/refs_merged.txt'
_write_merged_refs(path_refs, path_merged_refs)
cmd = [
'java', '-Xmx1g', # heapsize of 1G to avoid OutOfMemoryError
'-jar', f'{cur_dir}/meteor-1.5/meteor-1.5.jar',
path_hyp, path_merged_refs,
'-r', '%i'%len(path_refs), # refCount
'-l', 'en', '-norm' # also supports language: cz de es fr ar
]
# print(cmd)
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, error = process.communicate()
for line in output.decode().split('\n'):
if "Final score:" in line:
return float(line.split()[-1])
print('meteor-1.5.jar returns unexpected message')
print("cmd = " + " ".join(cmd))
print(output.decode())
print(error.decode())
return -1
def calc_entropy(path_hyp, n_lines=None):
# based on Yizhe Zhang's code
etp_score = [0.0,0.0,0.0,0.0]
counter = [defaultdict(int),defaultdict(int),defaultdict(int),defaultdict(int)]
i = 0
for line in open(path_hyp, encoding='utf-8'):
i += 1
words = line.strip('\n').split()
for n in range(4):
for idx in range(len(words)-n):
ngram = ' '.join(words[idx:idx+n+1])
counter[n][ngram] += 1
if i == n_lines:
break
for n in range(4):
total = sum(counter[n].values())
for v in counter[n].values():
etp_score[n] += - v /total * (np.log(v) - np.log(total))
return etp_score
def calc_len(path, n_lines):
l = []
for line in open(path, encoding='utf8'):
l.append(len(line.strip('\n').split()))
if len(l) == n_lines:
break
return np.mean(l)
def calc_diversity(path_hyp):
tokens = [0.0,0.0]
types = [defaultdict(int),defaultdict(int)]
for line in open(path_hyp, encoding='utf-8'):
words = line.strip('\n').split()
for n in range(2):
for idx in range(len(words)-n):
ngram = ' '.join(words[idx:idx+n+1])
types[n][ngram] = 1
tokens[n] += 1
div1 = len(types[0].keys())/tokens[0]
div2 = len(types[1].keys())/tokens[1]
return [div1, div2]
def nlp_metrics(path_refs, path_hyp, fld_out='temp', n_lines=None):
nist, bleu = calc_nist_bleu(path_refs, path_hyp, fld_out, n_lines)
meteor = calc_meteor(path_refs, path_hyp, fld_out, n_lines)
entropy = calc_entropy(path_hyp, n_lines)
div = calc_diversity(path_hyp)
avg_len = calc_len(path_hyp, n_lines)
return nist, bleu, meteor, entropy, div, avg_len
def _write_merged_refs(paths_in, path_out, n_lines=None):
# prepare merged ref file for meteor-1.5.jar (calc_meteor)
# lines[i][j] is the ref from i-th ref set for the j-th query
lines = []
for path_in in paths_in:
lines.append([line.strip('\n') for line in open(path_in, encoding='utf-8')])
with open(path_out, 'w', encoding='utf-8') as f:
for j in range(len(lines[0])):
for i in range(len(paths_in)):
f.write(unicode(lines[i][j]) + "\n")
def _write_xml(paths_in, path_out, role, n_lines=None):
# prepare .xml files for mteval-v14c.pl (calc_nist_bleu)
# role = 'src', 'hyp' or 'ref'
lines = [
'<?xml version="1.0" encoding="UTF-8"?>',
'<!DOCTYPE mteval SYSTEM "">',
'<!-- generated by https://github.com/golsun/NLP-tools -->',
'<!-- from: %s -->'%paths_in,
'<!-- as inputs for ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v14c.pl -->',
'<mteval>',
]
for i_in, path_in in enumerate(paths_in):
# header ----
if role == 'src':
lines.append('<srcset setid="unnamed" srclang="src">')
set_ending = '</srcset>'
elif role == 'hyp':
lines.append('<tstset setid="unnamed" srclang="src" trglang="tgt" sysid="unnamed">')
set_ending = '</tstset>'
elif role == 'ref':
lines.append('<refset setid="unnamed" srclang="src" trglang="tgt" refid="ref%i">'%i_in)
set_ending = '</refset>'
lines.append('<doc docid="unnamed" genre="unnamed">')
# body -----
if role == 'src':
body = ['__src__'] * n_lines
else:
with open(path_in, 'r', encoding='utf-8') as f:
body = f.readlines()
if n_lines is not None:
body = body[:n_lines]
#for i in range(len(body)):
i = 0
for b in body:
line = b.strip('\n')
line = line.replace('&',' ').replace('<',' ') # remove illegal xml char
# if len(line) > 0:
lines.append('<p><seg id="%i"> %s </seg></p>'%(i + 1, line))
i += 1
# ending -----
lines.append('</doc>')
if role == 'src':
lines.append('</srcset>')
elif role == 'hyp':
lines.append('</tstset>')
elif role == 'ref':
lines.append('</refset>')
lines.append('</mteval>')
with open(path_out, 'w', encoding='utf-8') as f:
f.write(unicode('\n'.join(lines)))
def dialogue_evaluation(hyp_file, ref_file, fld_out):
nist, bleu, meteor, entropy, div, avg_len = nlp_metrics([ref_file], hyp_file, fld_out)
results = {
'NIST-2': nist[1],
'NIST-4': nist[3],
'BLEU-2': bleu[1],
'BLEU-4': bleu[3],
'METEOR': meteor,
'Entropy-4': entropy[3],
'Dist-1': div[0],
'Dist-2': div[1],
'avg_len': avg_len
}
return results
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--refs_dir', default=None)
parser.add_argument('--ref_file', default=None)
parser.add_argument('--hyp_file', required=True)
parser.add_argument('--fld_out', required=True)
args = parser.parse_args()
if args.ref_file is not None:
refs_files = [args.ref_file]
else:
refs_files = list(map(str, Path(args.refs_dir).glob('ref_*.txt')))
print("references: ", refs_files)
nist, bleu, meteor, entropy, div, avg_len = nlp_metrics(refs_files, args.hyp_file, args.fld_out)
print("NIST:", nist)
print("BLEU:", bleu)
print("METEOR:", meteor)
print("Entropy:", entropy)
print("Distinct:", div)
print("avg_len:", avg_len)
if __name__ == "__main__":
main()
Thank you so much. And one more question: where can I find the test.refs.txt and test.refs.txt files?
preds_ids = model.generate(input_ids, attention_mask=attention_mask, max_length=512, num_beams=1, pad_token_id=tokenizer.eos_token_id)
From DialoGPT paper,
Beam search (with beam width 10) dramatically improves BLEU and DIST scores, and marginally improves NIST and METEOR.
The paper mentions that the results obtained are with beam width 10 and you ran the evaluation with beam width 1. Maybe trying generating responses with num_beams=10
and observe if there is any difference.
I first extract contexts from
test.refs.txt
(6000 lines)and extract multi ref files (use up to 15 per sample)
Then use the following script to predict the responses on 6k multi-ref dataset.
But there is a big gap between the evaluation results and those described in the paper.
My evaluation results
Here are predictions of the first 20 test samples: