microsoft / FLAML

A fast library for AutoML and tuning. Join our Discord: https://discord.gg/Cppx2vSPVP.
https://microsoft.github.io/FLAML/
MIT License
3.93k stars 513 forks source link

[BUG] KeyError: 'params/eta' #1244

Open clearhanhui opened 1 year ago

clearhanhui commented 1 year ago

Bug details

I am running HPO for XGBoost with Ray and Bendsearch. At flaml/tune/searcher/search_thread.py#L66, in my case, the config is

{
'num_boost_round': 10, 
'params': {'max_depth': 12, 'eta': 0.020168455186106736, 'min_child_weight': 1.4504723523894132, 'scale_pos_weight': 3.794258636185337, 'gamma': 0.4985070123025904}
}

and the self._const is

{
'params': {'verbosity': 3, 'booster': 'gbtree', 'eval_metric': 'auc', 'tree_method': 'hist', 'objective': 'binary:logistic'}
}

after update step, I will get

{
'num_boost_round': 10, 
'params': {'verbosity': 3, 'booster': 'gbtree', 'eval_metric': 'auc', 'tree_method': 'hist', 'objective': 'binary:logistic'}
}

Values in config['params'] sampled from search space are all dropped.

How to solve

I solved it by recursively update config . Here is an example:

def recursive_update(d:dict, u:dict):
    """
    Args:
        d (dict): The target dictionary to be updated.
        u (dict): A dictionary containing values to be merged into `d`.
    """
    for k, v in u.items():
        if isinstance(v, dict) and k in d and isinstance(d[k], dict):
            recursive_update(d[k], v)
        else:
            d[k] = v

Then just replace config.update(self._const) with recursive_update(config, self._const), then i can get:

{
'num_boost_round': 10, 
'params': {'max_depth': 12, 'eta': 0.020168455186106736, 'min_child_weight': 1.4504723523894132, 'scale_pos_weight': 3.794258636185337, 'gamma': 0.4985070123025904, 'verbosity': 3, 'booster': 'gbtree', 'eval_metric': 'auc', 'tree_method': 'hist', 'objective': 'binary:logistic'}
}

My Traceback

Traceback (most recent call last):
  File "xgb_main.py", line 73, in <module>
    val_set=val_set, val_set_params=val_set_params)
  File "/home/ray/code-repo/dml-mljobs/xgb/utils.py", line 27, in wrapper
    v = func(*args, **kwargs)
  File "/home/ray/code-repo/dml-mljobs/xgb/tune.py", line 131, in fit
    result_grid = tuner.fit()
  File "/usr/local/python3/lib/python3.7/site-packages/ray/tune/tuner.py", line 292, in fit
    return self._local_tuner.fit()
  File "/usr/local/python3/lib/python3.7/site-packages/ray/tune/impl/tuner_internal.py", line 455, in fit
    analysis = self._fit_internal(trainable, param_space)
  File "/usr/local/python3/lib/python3.7/site-packages/ray/tune/impl/tuner_internal.py", line 573, in _fit_internal
    **args,
  File "/usr/local/python3/lib/python3.7/site-packages/ray/tune/tune.py", line 756, in run
    runner.step()
  File "/usr/local/python3/lib/python3.7/site-packages/ray/tune/execution/trial_runner.py", line 953, in step
    next_trial = self._update_trial_queue_and_get_next_trial()
  File "/usr/local/python3/lib/python3.7/site-packages/ray/tune/execution/trial_runner.py", line 889, in _update_trial_queue_and_get_next_trial
    if not self._update_trial_queue(blocking=wait_for_trial):
  File "/usr/local/python3/lib/python3.7/site-packages/ray/tune/execution/trial_runner.py", line 1475, in _update_trial_queue
    trial = self._search_alg.next_trial()
  File "/usr/local/python3/lib/python3.7/site-packages/ray/tune/search/search_generator.py", line 101, in next_trial
    self._experiment.spec, self._experiment.dir_name
  File "/usr/local/python3/lib/python3.7/site-packages/ray/tune/search/search_generator.py", line 110, in create_trial_if_possible
    suggested_config = self.searcher.suggest(trial_id)
  File "/usr/local/python3/lib/python3.7/site-packages/ray/tune/search/concurrency_limiter.py", line 108, in suggest
    suggestion = self.searcher.suggest(trial_id)
  File "/usr/local/python3/lib/python3.7/site-packages/flaml/tune/searcher/blendsearch.py", line 691, in suggest
    skip = self._should_skip(choice, trial_id, config, space)
  File "/usr/local/python3/lib/python3.7/site-packages/flaml/tune/searcher/blendsearch.py", line 823, in _should_skip
    config_signature = self._ls.config_signature(config, space)
  File "/usr/local/python3/lib/python3.7/site-packages/flaml/tune/searcher/flow2.py", line 635, in config_signature
    value = config[key]
KeyError: 'params/eta'
sonichi commented 1 year ago

Thanks. Would you like to create a PR?

clearhanhui commented 1 year ago

Thanks. Would you like to create a PR?

Yes. https://github.com/microsoft/FLAML/pull/1246

yxtay commented 8 months ago

One way I worked around this bug is to ensure that space/param_space only contains hyperparameters defined with tune search space and remove any constants. I am using Ray Train TorchTrainer, so I moved the constants there instead.

If you are using the function trainable API, consider splitting out constants from config into separate arguments and use tune.with_parameters().

I believe this bug happens when trying to merge the constants with the sampled hyperparameters in config.

thinkall commented 8 months ago

One way I worked around this bug is to ensure that space/param_space only contains hyperparameters defined with tune search space and remove any constants. I am using Ray Train TorchTrainer, so I moved the constants there instead.

If you are using the function trainable API, consider splitting out constants from config into separate arguments and use tune.with_parameters().

I believe this bug happens when trying to merge the constants with the sampled hyperparameters in config.

Thank you @yxtay.