microsoft / LoRA

Code for loralib, an implementation of "LoRA: Low-Rank Adaptation of Large Language Models"
https://arxiv.org/abs/2106.09685
MIT License
10.67k stars 681 forks source link

Replicating Result on WebNLG #94

Open vvhj opened 1 year ago

vvhj commented 1 year ago

Thanks for your nice work.

I am try to replicate result on webNLG, but the finnal epochs of checkpoint is only 11270, different from 20000. This results in a significant difference in the accuracy of the reproduction compared to your results.

Here is the my instruct:

python -m torch.distributed.launch --nproc_per_node=1 src/gpt2_ft.py \ --train_data ./data/webnlg_challenge_2017/train.jsonl \ --valid_data ./data/webnlg_challenge_2017/valid.jsonl \ --train_batch_size 8 \ --grad_acc 1 \ --valid_batch_size 4 \ --seq_len 512 \ --model_card gpt2.md \ --init_checkpoint ./pretrained_checkpoints/gpt2-medium-pytorch_model.bin \ --platform local \ --clip 0.0 \ --lr 0.0002 \ --weight_decay 0.01 \ --correct_bias \ --adam_beta2 0.999 \ --scheduler linear \ --warmup_step 500 \ --max_epoch 5 \ --save_interval 1000 \ --lora_dim 4 \ --lora_alpha 32 \ --lora_dropout 0.1 \ --label_smooth 0.1 \ --work_dir ./trained_models/GPT2_M/webnlgv9 \ --random_seed 110

edwardjhu commented 1 year ago

Are you saying that the checkpoint we uploaded is from iteration 11270, not 20000? I need to double check but it's possible we picked the best performing checkpoint, which is not necessarily the final one, following prior work.

RayCyder commented 5 months ago

yes , same problem;