microsoft / MMdnn

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MIT License
5.8k stars 965 forks source link

[Tensorflow SENet support] Unknown layer type: Axpy #142

Open ykamikawa opened 6 years ago

ykamikawa commented 6 years ago

Platform (like ubuntu 16.04/win10):ubuntu 16.04

Python version:2.7

Source framework with version (like Tensorflow 1.4.1 with GPU): tensorflow

Destination framework with version (like CNTK 2.3 with GPU): IR

Pre-trained model path (webpath or webdisk path): https://drive.google.com/open?id=1iq703NMBgp4YFgbCetjiZzZ5KGtB2o84 https://github.com/hujie-frank/SENet

Running scripts: -> # python -m mmdnn.conversion._script.convertToIR -f caffe -d se_inception_resnet_v2 -n SENet.prototxt -w SENet.caffemodel

ykamikawa commented 6 years ago

Check failed: registry.count(type) == 1 (0 vs. 1) Unknown layer type: Axpy (known types: AbsVal, Accum, Accuracy, ArgMax, BNLL, BatchNorm, BatchReindex, Bias, BlackAugmentation, ChannelNorm, Concat, ContrastiveLoss, Convolution, Correlation, Correlation1D, Crop, CustomData, Data, DataAugmentation, Deconvolution, DisparityData, Downsample, Dropout, DummyData, ELU, Eltwise, Embed, EuclideanLoss, Exp, FLOWriter, Filter, Flatten, FloatReader, FloatWriter, FlowAugmentation, FlowWarp, GenerateAugmentationParameters, HDF5Data, HDF5Output, HingeLoss, Im2col, ImageData, ImgReader, ImgWriter, InfogainLoss, InnerProduct, Input, L1Loss, LRN, LSTM, LSTMUnit, Log, LpqLoss, MVN, Mean, MemoryData, MultinomialLogisticLoss, NegReLU, PFMWriter, PReLU, Parameter, Pooling, Power, Python, RNN, ReLU, Reduction, Resample, Reshape, SPP, Scale, Sigmoid, SigmoidCrossEntropyLoss, Silence, Slice, Softmax, SoftmaxWithLoss, Split, TanH, Threshold, Tile, WindowData)

kitstar commented 6 years ago

Hi @ykamikawa , the model contains the custom layer Axpy. MMdnn can't handle custom layer currently. Thanks.