microsoft / Oscar

Oscar and VinVL
MIT License
1.04k stars 252 forks source link

How do you implement the multi-layer transformers? #203

Closed Ynjxsjmh closed 1 year ago

Ynjxsjmh commented 1 year ago

I'm reading your paper https://arxiv.org/pdf/2004.06165.pdf and curious about the implementation of the multi-layer transformers below

image

I dig into run_retrieval.py and run_captioning.py, and find their models are ImageBertForSequenceClassification and BertForImageCaptioning. For ImageBertForSequenceClassification, I didn't see any line related with multi-layer transformers, and so is the BertForImageCaptioning. I think the only related one might be outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) since bert has a multi-layer transformer encoders. Is there anything I'm missing?

class ImageBertForSequenceClassification(BertPreTrainedModel):
    """
    Modified from BertForSequenceClassification to support oscar training.
    """
    def __init__(self, config):
        super(ImageBertForSequenceClassification, self).__init__(config)
        self.num_labels = config.num_labels
        self.loss_type = config.loss_type
        self.config = config
        if config.img_feature_dim > 0:
            self.bert = BertImgModel(config)
        else:
            self.bert = BertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        if hasattr(config, 'classifier'):
            if not hasattr(config, 'cls_hidden_scale'): 
                config.cls_hidden_scale = 2

            if config.classifier == 'linear':
                self.classifier = nn.Linear(config.hidden_size,
                                            self.config.num_labels)
            elif config.classifier == 'mlp':
                self.classifier = nn.Sequential(
                    nn.Linear(config.hidden_size, config.hidden_size * config.cls_hidden_scale),
                    nn.ReLU(),
                    nn.Linear(config.hidden_size * config.cls_hidden_scale, self.config.num_labels)
                )
        else:
            self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)  # original
        self.apply(self.init_weights)

    def init_code_embedding(self, em):
        self.bert.code_embeddings.weight.data = em.clone()

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, 
            position_ids=None, head_mask=None, img_feats=None):
        outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                            attention_mask=attention_mask, head_mask=head_mask, img_feats=img_feats)
        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
        if labels is not None:
            if self.num_labels == 1: #  doing regression
                loss_fct = MSELoss()
                labels = labels.to(torch.float)
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                if self.loss_type == 'kl':
                    # ...
                elif self.loss_type == 'bce': # [VQA]
                    loss = instance_bce_with_logits(logits, labels)
                else: # cross_entropy [GQA, Retrieval, Captioning]
                    loss_fct = CrossEntropyLoss()
                    loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs
        return outputs
Ynjxsjmh commented 1 year ago

It's BertImgModel I guess.