I dig into run_retrieval.py and run_captioning.py, and find their models are ImageBertForSequenceClassification and BertForImageCaptioning. For ImageBertForSequenceClassification, I didn't see any line related with multi-layer transformers, and so is the BertForImageCaptioning. I think the only related one might be outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) since bert has a multi-layer transformer encoders. Is there anything I'm missing?
class ImageBertForSequenceClassification(BertPreTrainedModel):
"""
Modified from BertForSequenceClassification to support oscar training.
"""
def __init__(self, config):
super(ImageBertForSequenceClassification, self).__init__(config)
self.num_labels = config.num_labels
self.loss_type = config.loss_type
self.config = config
if config.img_feature_dim > 0:
self.bert = BertImgModel(config)
else:
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if hasattr(config, 'classifier'):
if not hasattr(config, 'cls_hidden_scale'):
config.cls_hidden_scale = 2
if config.classifier == 'linear':
self.classifier = nn.Linear(config.hidden_size,
self.config.num_labels)
elif config.classifier == 'mlp':
self.classifier = nn.Sequential(
nn.Linear(config.hidden_size, config.hidden_size * config.cls_hidden_scale),
nn.ReLU(),
nn.Linear(config.hidden_size * config.cls_hidden_scale, self.config.num_labels)
)
else:
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) # original
self.apply(self.init_weights)
def init_code_embedding(self, em):
self.bert.code_embeddings.weight.data = em.clone()
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
position_ids=None, head_mask=None, img_feats=None):
outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
attention_mask=attention_mask, head_mask=head_mask, img_feats=img_feats)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
if self.num_labels == 1: # doing regression
loss_fct = MSELoss()
labels = labels.to(torch.float)
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
if self.loss_type == 'kl':
# ...
elif self.loss_type == 'bce': # [VQA]
loss = instance_bce_with_logits(logits, labels)
else: # cross_entropy [GQA, Retrieval, Captioning]
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs
I'm reading your paper https://arxiv.org/pdf/2004.06165.pdf and curious about the implementation of the multi-layer transformers below
I dig into
run_retrieval.py
andrun_captioning.py
, and find their models areImageBertForSequenceClassification
andBertForImageCaptioning
. ForImageBertForSequenceClassification
, I didn't see any line related with multi-layer transformers, and so is theBertForImageCaptioning
. I think the only related one might beoutputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
since bert has a multi-layer transformer encoders. Is there anything I'm missing?