def compute_pseudo_label_loss(self, student_info, teacher_info):
M = self._get_trans_mat(
teacher_info["transform_matrix"], student_info["transform_matrix"]
)
pseudo_bboxes = self._transform_bbox(
teacher_info["det_bboxes"],
M,
[meta["img_shape"] for meta in student_info["img_metas"]],
)
然后在unsup_rcnn_cls_loss()又做了一次坐标变换
M = self._get_trans_mat(student_transMat, teacher_transMat)
aligned_proposals = self._transform_bbox(
selected_bboxes,
M,
[meta["img_shape"] for meta in teacher_img_metas],
)
这里是对teacher生成的伪标签做了坐标变换吧?
然后在unsup_rcnn_cls_loss()又做了一次坐标变换