microsoft / SoftTeacher

Semi-Supervised Learning, Object Detection, ICCV2021
MIT License
904 stars 123 forks source link

assert len(indices) == len(self) #62

Closed winnerziqi closed 3 years ago

winnerziqi commented 3 years ago

hello, When I use it, raise error: "assert len(indices) == len(self), f"{indices} not equal {len(self)} while offset is: {offset}"" then I print the length info, =====len of indices is 26865 - offset: 0 - len self 36650 below is the detail error info, Please help me. Traceback (most recent call last): File "tools/train.py", line 198, in <module> main() File "tools/train.py", line 193, in main meta=meta, File "/data6/ziqiwen/code/softteacher/ssod/apis/train.py", line 206, in train_detector runner.run(data_loaders, cfg.workflow) File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/mmcv/runner/iter_based_runner.py", line 117, in run iter_loaders = [IterLoader(x) for x in data_loaders] File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/mmcv/runner/iter_based_runner.py", line 117, in <listcomp> iter_loaders = [IterLoader(x) for x in data_loaders] File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/mmcv/runner/iter_based_runner.py", line 23, in __init__ self.iter_loader = iter(self._dataloader) File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 291, in __iter__ return _MultiProcessingDataLoaderIter(self) File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 764, in __init__ self._try_put_index() File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 994, in _try_put_index index = self._next_index() File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 357, in _next_index return next(self._sampler_iter) # may raise StopIteration File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/utils/data/sampler.py", line 208, in __iter__ for idx in self.sampler: File "/data6/ziqiwen/code/softteacher/ssod/datasets/samplers/semi_sampler.py", line 189, in __iter__ assert len(indices) == len(self) AssertionError Traceback (most recent call last): File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/distributed/launch.py", line 261, in <module> main() File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/distributed/launch.py", line 257, in main cmd=cmd)

MendelXu commented 3 years ago

Could you post the full log here?

winnerziqi commented 3 years ago

thanks, here is my full log.

fatal: Not a git repository (or any parent up to mount point /data6) Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set). 2021-10-18 13:36:46,968 - mmdet.ssod - INFO - [<StreamHandler (INFO)>, <FileHandler /data6/ziqiwen/code/softteacher/work_dirs/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k/10/1/20211018_133646.log (INFO)>] 2021-10-18 13:36:46,968 - mmdet.ssod - INFO - Environment info:

sys.platform: linux Python: 3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0] CUDA available: True GPU 0,1,2,3: TITAN Xp CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 9.0, V9.0.176 GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609 PyTorch: 1.6.0 PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) oneAPI Math Kernel Library Version 2021.3-Product Build 20210617 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v1.5.0 (Git Hash e2ac1fac44c5078ca927cb9b90e1b3066a0b2ed0)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • CUDA Runtime 10.1
  • NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
  • CuDNN 7.6.3
  • Magma 2.5.2
  • Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF,

TorchVision: 0.7.0 OpenCV: 4.5.3 MMCV: 1.3.12 MMCV Compiler: GCC 7.3 MMCV CUDA Compiler: 10.1 MMDetection: 2.16.0+

2021-10-18 13:36:49,973 - mmdet.ssod - INFO - Distributed training: True 2021-10-18 13:36:53,132 - mmdet.ssod - INFO - Config: model = dict( type='SoftTeacher', model=dict( type='FasterRCNN', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100))), train_cfg=dict( use_teacher_proposal=False, pseudo_label_initial_score_thr=0.5, rpn_pseudo_threshold=0.9, cls_pseudo_threshold=0.9, reg_pseudo_threshold=0.01, jitter_times=10, jitter_scale=0.06, min_pseduo_box_size=0, unsup_weight=4.0), test_cfg=dict(inference_on='student')) dataset_type = 'CocoDataset' img_norm_cfg = dict( mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5), dict( type='OneOf', transforms=[ dict(type='Identity'), dict(type='AutoContrast'), dict(type='RandEqualize'), dict(type='RandSolarize'), dict(type='RandColor'), dict(type='RandContrast'), dict(type='RandBrightness'), dict(type='RandSharpness'), dict(type='RandPosterize') ]) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='sup'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag')) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type='SemiDataset', sup=dict( type='CocoDataset', ann_file= '/data6/ziqiwen/code/unbiased-teacher/datasets/coco/annotations/semi_supervised/instances_train2017.1@10.json', img_prefix= '/data6/ziqiwen/code/unbiased-teacher/datasets/coco/train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5), dict( type='OneOf', transforms=[ dict(type='Identity'), dict(type='AutoContrast'), dict(type='RandEqualize'), dict(type='RandSolarize'), dict(type='RandColor'), dict(type='RandContrast'), dict(type='RandBrightness'), dict(type='RandSharpness'), dict(type='RandPosterize') ]) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='sup'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag')) ]), unsup=dict( type='CocoDataset', ann_file= '/data6/ziqiwen/code/unbiased-teacher/datasets/coco/annotations/semi_supervised/instances_train2017.1@10-unlabeled.json', img_prefix= '/data6/ziqiwen/code/unbiased-teacher/datasets/coco/train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='PseudoSamples', with_bbox=True), dict( type='MultiBranch', unsup_teacher=[ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5), dict( type='ShuffledSequential', transforms=[ dict( type='OneOf', transforms=[ dict(type='Identity'), dict(type='AutoContrast'), dict(type='RandEqualize'), dict(type='RandSolarize'), dict(type='RandColor'), dict(type='RandContrast'), dict(type='RandBrightness'), dict(type='RandSharpness'), dict(type='RandPosterize') ]), dict( type='OneOf', transforms=[{ 'type': 'RandTranslate', 'x': (-0.1, 0.1) }, { 'type': 'RandTranslate', 'y': (-0.1, 0.1) }, { 'type': 'RandRotate', 'angle': (-30, 30) }, [{ 'type': 'RandShear', 'x': (-30, 30) }, { 'type': 'RandShear', 'y': (-30, 30) }]]) ]), dict( type='RandErase', n_iterations=(1, 5), size=[0, 0.2], squared=True) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_student'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ], unsup_student=[ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_teacher'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ]) ], filter_empty_gt=False)), val=dict( type='CocoDataset', ann_file= '/data6/ziqiwen/code/unbiased-teacher/datasets/coco/annotations/semi_supervised/instances_train2017.1@10.json', img_prefix= '/data6/ziqiwen/code/unbiased-teacher/datasets/coco/train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ]), test=dict( type='CocoDataset', ann_file= '/data6/ziqiwen/code/unbiased-teacher/datasets/coco/annotations/semi_supervised/instances_train2017.1@10.json', img_prefix= '/data6/ziqiwen/code/unbiased-teacher/datasets/coco/train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ]), sampler=dict( train=dict( type='SemiBalanceSampler', sample_ratio=[1, 4], by_prob=True, epoch_length=7330))) evaluation = dict(interval=4000, metric='bbox', type='SubModulesDistEvalHook') optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[120000, 160000]) runner = dict(type='IterBasedRunner', max_iters=180000) checkpoint_config = dict(interval=4000, by_epoch=False, max_keep_ckpts=20) log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')]) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='WeightSummary'), dict(type='MeanTeacher', momentum=0.999, interval=1, warm_up=0) ] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] mmdet_base = '../base' strong_pipeline = [ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5), dict( type='ShuffledSequential', transforms=[ dict( type='OneOf', transforms=[ dict(type='Identity'), dict(type='AutoContrast'), dict(type='RandEqualize'), dict(type='RandSolarize'), dict(type='RandColor'), dict(type='RandContrast'), dict(type='RandBrightness'), dict(type='RandSharpness'), dict(type='RandPosterize') ]), dict( type='OneOf', transforms=[{ 'type': 'RandTranslate', 'x': (-0.1, 0.1) }, { 'type': 'RandTranslate', 'y': (-0.1, 0.1) }, { 'type': 'RandRotate', 'angle': (-30, 30) }, [{ 'type': 'RandShear', 'x': (-30, 30) }, { 'type': 'RandShear', 'y': (-30, 30) }]]) ]), dict( type='RandErase', n_iterations=(1, 5), size=[0, 0.2], squared=True) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_student'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ] weak_pipeline = [ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_teacher'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ] unsup_pipeline = [ dict(type='LoadImageFromFile'), dict(type='PseudoSamples', with_bbox=True), dict( type='MultiBranch', unsup_teacher=[ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5), dict( type='ShuffledSequential', transforms=[ dict( type='OneOf', transforms=[ dict(type='Identity'), dict(type='AutoContrast'), dict(type='RandEqualize'), dict(type='RandSolarize'), dict(type='RandColor'), dict(type='RandContrast'), dict(type='RandBrightness'), dict(type='RandSharpness'), dict(type='RandPosterize') ]), dict( type='OneOf', transforms=[{ 'type': 'RandTranslate', 'x': (-0.1, 0.1) }, { 'type': 'RandTranslate', 'y': (-0.1, 0.1) }, { 'type': 'RandRotate', 'angle': (-30, 30) }, [{ 'type': 'RandShear', 'x': (-30, 30) }, { 'type': 'RandShear', 'y': (-30, 30) }]]) ]), dict( type='RandErase', n_iterations=(1, 5), size=[0, 0.2], squared=True) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_student'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ], unsup_student=[ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_teacher'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ]) ] fp16 = dict(loss_scale='dynamic') fold = 1 percent = 10 work_dir = 'work_dirs/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k/10/1' cfg_name = 'soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k' gpu_ids = range(0, 1)

/home/ziqiwen/code/mmdetection/mmdet/core/anchor/builder.py:17: UserWarning: build_anchor_generator would be deprecated soon, please use build_prior_generator 'build_anchor_generator would be deprecated soon, please use ' 2021-10-18 13:36:54,143 - mmdet.ssod - INFO - initialize ResNet with init_cfg {'type': 'Pretrained', 'checkpoint': 'open-mmlab://detectron2/resnet50_caffe'} 2021-10-18 13:36:54,144 - mmcv - INFO - load model from: open-mmlab://detectron2/resnet50_caffe 2021-10-18 13:36:54,144 - mmcv - INFO - Use load_from_openmmlab loader 2021-10-18 13:36:54,265 - mmcv - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: conv1.bias

2021-10-18 13:36:54,295 - mmdet.ssod - INFO - initialize FPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'} 2021-10-18 13:36:54,328 - mmdet.ssod - INFO - initialize RPNHead with init_cfg {'type': 'Normal', 'layer': 'Conv2d', 'std': 0.01} 2021-10-18 13:36:54,337 - mmdet.ssod - INFO - initialize Shared2FCBBoxHead with init_cfg [{'type': 'Normal', 'std': 0.01, 'override': {'name': 'fc_cls'}}, {'type': 'Normal', 'std': 0.001, 'override': {'name': 'fc_reg'}}, {'type': 'Xavier', 'layer': 'Linear', 'override': [{'name': 'shared_fcs'}, {'name': 'cls_fcs'}, {'name': 'reg_fcs'}]}] 2021-10-18 13:36:54,773 - mmdet.ssod - INFO - initialize ResNet with init_cfg {'type': 'Pretrained', 'checkpoint': 'open-mmlab://detectron2/resnet50_caffe'} 2021-10-18 13:36:54,774 - mmcv - INFO - load model from: open-mmlab://detectron2/resnet50_caffe 2021-10-18 13:36:54,774 - mmcv - INFO - Use load_from_openmmlab loader 2021-10-18 13:36:54,883 - mmcv - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: conv1.bias

2021-10-18 13:36:54,912 - mmdet.ssod - INFO - initialize FPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'} 2021-10-18 13:36:54,943 - mmdet.ssod - INFO - initialize RPNHead with init_cfg {'type': 'Normal', 'layer': 'Conv2d', 'std': 0.01} 2021-10-18 13:36:54,953 - mmdet.ssod - INFO - initialize Shared2FCBBoxHead with init_cfg [{'type': 'Normal', 'std': 0.01, 'override': {'name': 'fc_cls'}}, {'type': 'Normal', 'std': 0.001, 'override': {'name': 'fc_reg'}}, {'type': 'Xavier', 'layer': 'Linear', 'override': [{'name': 'shared_fcs'}, {'name': 'cls_fcs'}, {'name': 'reg_fcs'}]}] loading annotations into memory... Done (t=1.48s) creating index... index created! loading annotations into memory... Done (t=14.08s) creating index... index created! fatal: Not a git repository (or any parent up to mount point /data6) Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set). loading annotations into memory... Done (t=1.17s) creating index... index created! 2021-10-18 13:37:18,183 - mmdet.ssod - INFO - Start running, host: ziqiwen@ISIP-IW4200-4G-3, work_dir: /data6/ziqiwen/code/softteacher/work_dirs/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k/10/1 2021-10-18 13:37:18,184 - mmdet.ssod - INFO - Hooks will be executed in the following order: before_run: (VERY_HIGH ) StepLrUpdaterHook
(ABOVE_NORMAL) Fp16OptimizerHook
(NORMAL ) CheckpointHook
(NORMAL ) WeightSummary
(NORMAL ) MeanTeacher
(80 ) SubModulesDistEvalHook
(VERY_LOW ) TextLoggerHook


before_train_epoch: (VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) NumClassCheckHook
(LOW ) IterTimerHook
(80 ) SubModulesDistEvalHook
(VERY_LOW ) TextLoggerHook


before_train_iter: (VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) MeanTeacher
(LOW ) IterTimerHook
(80 ) SubModulesDistEvalHook


after_train_iter: (ABOVE_NORMAL) Fp16OptimizerHook
(NORMAL ) CheckpointHook
(NORMAL ) MeanTeacher
(LOW ) IterTimerHook
(80 ) SubModulesDistEvalHook
(VERY_LOW ) TextLoggerHook


after_train_epoch: (NORMAL ) CheckpointHook
(80 ) SubModulesDistEvalHook
(VERY_LOW ) TextLoggerHook


before_val_epoch: (NORMAL ) NumClassCheckHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook


before_val_iter: (LOW ) IterTimerHook


after_val_iter: (LOW ) IterTimerHook


after_val_epoch: (VERY_LOW ) TextLoggerHook


2021-10-18 13:37:18,184 - mmdet.ssod - INFO - workflow: [('train', 1)], max: 180000 iters 2021-10-18 13:37:18,270 - mmdet.ssod - INFO - +--------------------------------------------------------------------------------------------------------------------+ | Model Information | +------------------------------------------------+-----------+---------------+-----------------------+------+--------+ | Name | Optimized | Shape | Value Scale [Min,Max] | Lr | Wd | +------------------------------------------------+-----------+---------------+-----------------------+------+--------+ | teacher.backbone.conv1.weight | N | 64X3X7X7 | Min:-0.671 Max:0.704 | 0.01 | 0.0001 | | teacher.backbone.bn1.weight | N | 64 | Min:0.513 Max:2.669 | 0.01 | 0.0001 | | teacher.backbone.bn1.bias | N | 64 | Min:-2.654 Max:6.354 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.conv1.weight | N | 64X64X1X1 | Min:-0.717 Max:0.392 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.bn1.weight | N | 64 | Min:0.509 Max:2.066 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.bn1.bias | N | 64 | Min:-2.411 Max:3.608 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.conv2.weight | N | 64X64X3X3 | Min:-0.390 Max:0.364 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.bn2.weight | N | 64 | Min:0.420 Max:2.530 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.bn2.bias | N | 64 | Min:-2.286 Max:5.913 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.conv3.weight | N | 256X64X1X1 | Min:-0.397 Max:0.348 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.bn3.weight | N | 256 | Min:0.011 Max:2.820 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.bn3.bias | N | 256 | Min:-1.126 Max:1.522 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.downsample.0.weight | N | 256X64X1X1 | Min:-0.772 Max:0.900 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.downsample.1.weight | N | 256 | Min:0.004 Max:3.064 | 0.01 | 0.0001 | | teacher.backbone.layer1.0.downsample.1.bias | N | 256 | Min:-1.126 Max:1.522 | 0.01 | 0.0001 | | teacher.backbone.layer1.1.conv1.weight | N | 64X256X1X1 | Min:-0.297 Max:0.220 | 0.01 | 0.0001 | | teacher.backbone.layer1.1.bn1.weight | N | 64 | Min:0.746 Max:1.949 | 0.01 | 0.0001 | | teacher.backbone.layer1.1.bn1.bias | N | 64 | Min:-1.688 Max:1.578 | 0.01 | 0.0001 | | teacher.backbone.layer1.1.conv2.weight | N | 64X64X3X3 | Min:-0.240 Max:0.318 | 0.01 | 0.0001 | | teacher.backbone.layer1.1.bn2.weight | N | 64 | Min:0.621 Max:1.618 | 0.01 | 0.0001 | | teacher.backbone.layer1.1.bn2.bias | N | 64 | Min:-2.003 Max:2.398 | 0.01 | 0.0001 | | teacher.backbone.layer1.1.conv3.weight | N | 256X64X1X1 | Min:-0.240 Max:0.280 | 0.01 | 0.0001 | | teacher.backbone.layer1.1.bn3.weight | N | 256 | Min:-0.017 Max:2.130 | 0.01 | 0.0001 | | teacher.backbone.layer1.1.bn3.bias | N | 256 | Min:-1.711 Max:1.291 | 0.01 | 0.0001 | | teacher.backbone.layer1.2.conv1.weight | N | 64X256X1X1 | Min:-0.210 Max:0.264 | 0.01 | 0.0001 | | teacher.backbone.layer1.2.bn1.weight | N | 64 | Min:0.574 Max:1.688 | 0.01 | 0.0001 | | teacher.backbone.layer1.2.bn1.bias | N | 64 | Min:-1.876 Max:1.090 | 0.01 | 0.0001 | | teacher.backbone.layer1.2.conv2.weight | N | 64X64X3X3 | Min:-0.218 Max:0.201 | 0.01 | 0.0001 | | teacher.backbone.layer1.2.bn2.weight | N | 64 | Min:0.757 Max:1.649 | 0.01 | 0.0001 | | teacher.backbone.layer1.2.bn2.bias | N | 64 | Min:-2.221 Max:1.878 | 0.01 | 0.0001 | | teacher.backbone.layer1.2.conv3.weight | N | 256X64X1X1 | Min:-0.275 Max:0.350 | 0.01 | 0.0001 | | teacher.backbone.layer1.2.bn3.weight | N | 256 | Min:-0.058 Max:2.154 | 0.01 | 0.0001 | | teacher.backbone.layer1.2.bn3.bias | N | 256 | Min:-1.570 Max:1.535 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.conv1.weight | N | 128X256X1X1 | Min:-0.334 Max:0.300 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.bn1.weight | N | 128 | Min:0.610 Max:1.642 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.bn1.bias | N | 128 | Min:-1.579 Max:1.449 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.conv2.weight | N | 128X128X3X3 | Min:-0.384 Max:0.377 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.bn2.weight | N | 128 | Min:0.605 Max:1.622 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.bn2.bias | N | 128 | Min:-2.768 Max:1.747 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.conv3.weight | N | 512X128X1X1 | Min:-0.374 Max:0.434 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.bn3.weight | N | 512 | Min:-0.007 Max:2.730 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.bn3.bias | N | 512 | Min:-1.545 Max:1.256 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.downsample.0.weight | N | 512X256X1X1 | Min:-0.466 Max:0.642 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.downsample.1.weight | N | 512 | Min:0.006 Max:2.552 | 0.01 | 0.0001 | | teacher.backbone.layer2.0.downsample.1.bias | N | 512 | Min:-1.545 Max:1.256 | 0.01 | 0.0001 | | teacher.backbone.layer2.1.conv1.weight | N | 128X512X1X1 | Min:-0.162 Max:0.195 | 0.01 | 0.0001 | | teacher.backbone.layer2.1.bn1.weight | N | 128 | Min:0.578 Max:1.429 | 0.01 | 0.0001 | | teacher.backbone.layer2.1.bn1.bias | N | 128 | Min:-4.348 Max:0.588 | 0.01 | 0.0001 | | teacher.backbone.layer2.1.conv2.weight | N | 128X128X3X3 | Min:-0.176 Max:0.177 | 0.01 | 0.0001 | | teacher.backbone.layer2.1.bn2.weight | N | 128 | Min:0.511 Max:1.794 | 0.01 | 0.0001 | | teacher.backbone.layer2.1.bn2.bias | N | 128 | Min:-3.825 Max:1.343 | 0.01 | 0.0001 | | teacher.backbone.layer2.1.conv3.weight | N | 512X128X1X1 | Min:-0.344 Max:0.336 | 0.01 | 0.0001 | | teacher.backbone.layer2.1.bn3.weight | N | 512 | Min:-0.072 Max:2.122 | 0.01 | 0.0001 | | teacher.backbone.layer2.1.bn3.bias | N | 512 | Min:-1.502 Max:1.166 | 0.01 | 0.0001 | | teacher.backbone.layer2.2.conv1.weight | N | 128X512X1X1 | Min:-0.330 Max:0.369 | 0.01 | 0.0001 | | teacher.backbone.layer2.2.bn1.weight | N | 128 | Min:0.406 Max:1.696 | 0.01 | 0.0001 | | teacher.backbone.layer2.2.bn1.bias | N | 128 | Min:-2.696 Max:1.944 | 0.01 | 0.0001 | | teacher.backbone.layer2.2.conv2.weight | N | 128X128X3X3 | Min:-0.326 Max:0.374 | 0.01 | 0.0001 | | teacher.backbone.layer2.2.bn2.weight | N | 128 | Min:0.460 Max:2.179 | 0.01 | 0.0001 | | teacher.backbone.layer2.2.bn2.bias | N | 128 | Min:-1.587 Max:0.589 | 0.01 | 0.0001 | | teacher.backbone.layer2.2.conv3.weight | N | 512X128X1X1 | Min:-0.288 Max:0.232 | 0.01 | 0.0001 | | teacher.backbone.layer2.2.bn3.weight | N | 512 | Min:-0.006 Max:3.043 | 0.01 | 0.0001 | | teacher.backbone.layer2.2.bn3.bias | N | 512 | Min:-2.369 Max:0.440 | 0.01 | 0.0001 | | teacher.backbone.layer2.3.conv1.weight | N | 128X512X1X1 | Min:-0.298 Max:0.346 | 0.01 | 0.0001 | | teacher.backbone.layer2.3.bn1.weight | N | 128 | Min:0.736 Max:2.394 | 0.01 | 0.0001 | | teacher.backbone.layer2.3.bn1.bias | N | 128 | Min:-2.643 Max:0.756 | 0.01 | 0.0001 | | teacher.backbone.layer2.3.conv2.weight | N | 128X128X3X3 | Min:-0.272 Max:0.208 | 0.01 | 0.0001 | | teacher.backbone.layer2.3.bn2.weight | N | 128 | Min:0.682 Max:1.694 | 0.01 | 0.0001 | | teacher.backbone.layer2.3.bn2.bias | N | 128 | Min:-1.365 Max:1.599 | 0.01 | 0.0001 | | teacher.backbone.layer2.3.conv3.weight | N | 512X128X1X1 | Min:-0.279 Max:0.281 | 0.01 | 0.0001 | | teacher.backbone.layer2.3.bn3.weight | N | 512 | Min:-0.009 Max:1.721 | 0.01 | 0.0001 | | teacher.backbone.layer2.3.bn3.bias | N | 512 | Min:-1.897 Max:1.182 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.conv1.weight | N | 256X512X1X1 | Min:-0.230 Max:0.341 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.bn1.weight | N | 256 | Min:0.621 Max:1.636 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.bn1.bias | N | 256 | Min:-1.420 Max:0.917 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.conv2.weight | N | 256X256X3X3 | Min:-0.267 Max:0.179 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.bn2.weight | N | 256 | Min:0.585 Max:1.749 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.bn2.bias | N | 256 | Min:-1.837 Max:1.398 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.conv3.weight | N | 1024X256X1X1 | Min:-0.333 Max:0.384 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.bn3.weight | N | 1024 | Min:0.071 Max:2.367 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.bn3.bias | N | 1024 | Min:-0.938 Max:0.887 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.downsample.0.weight | N | 1024X512X1X1 | Min:-0.333 Max:0.421 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.downsample.1.weight | N | 1024 | Min:0.034 Max:2.779 | 0.01 | 0.0001 | | teacher.backbone.layer3.0.downsample.1.bias | N | 1024 | Min:-0.938 Max:0.887 | 0.01 | 0.0001 | | teacher.backbone.layer3.1.conv1.weight | N | 256X1024X1X1 | Min:-0.197 Max:0.236 | 0.01 | 0.0001 | | teacher.backbone.layer3.1.bn1.weight | N | 256 | Min:0.566 Max:1.743 | 0.01 | 0.0001 | | teacher.backbone.layer3.1.bn1.bias | N | 256 | Min:-2.703 Max:1.042 | 0.01 | 0.0001 | | teacher.backbone.layer3.1.conv2.weight | N | 256X256X3X3 | Min:-0.436 Max:0.196 | 0.01 | 0.0001 | | teacher.backbone.layer3.1.bn2.weight | N | 256 | Min:0.515 Max:2.301 | 0.01 | 0.0001 | | teacher.backbone.layer3.1.bn2.bias | N | 256 | Min:-2.548 Max:1.856 | 0.01 | 0.0001 | | teacher.backbone.layer3.1.conv3.weight | N | 1024X256X1X1 | Min:-0.438 Max:0.295 | 0.01 | 0.0001 | | teacher.backbone.layer3.1.bn3.weight | N | 1024 | Min:0.055 Max:1.943 | 0.01 | 0.0001 | | teacher.backbone.layer3.1.bn3.bias | N | 1024 | Min:-1.647 Max:1.016 | 0.01 | 0.0001 | | teacher.backbone.layer3.2.conv1.weight | N | 256X1024X1X1 | Min:-0.387 Max:0.337 | 0.01 | 0.0001 | | teacher.backbone.layer3.2.bn1.weight | N | 256 | Min:0.463 Max:1.886 | 0.01 | 0.0001 | | teacher.backbone.layer3.2.bn1.bias | N | 256 | Min:-2.399 Max:0.488 | 0.01 | 0.0001 | | teacher.backbone.layer3.2.conv2.weight | N | 256X256X3X3 | Min:-0.165 Max:0.258 | 0.01 | 0.0001 | | teacher.backbone.layer3.2.bn2.weight | N | 256 | Min:0.555 Max:1.901 | 0.01 | 0.0001 | | teacher.backbone.layer3.2.bn2.bias | N | 256 | Min:-1.655 Max:0.704 | 0.01 | 0.0001 | | teacher.backbone.layer3.2.conv3.weight | N | 1024X256X1X1 | Min:-0.290 Max:0.261 | 0.01 | 0.0001 | | teacher.backbone.layer3.2.bn3.weight | N | 1024 | Min:0.049 Max:1.450 | 0.01 | 0.0001 | | teacher.backbone.layer3.2.bn3.bias | N | 1024 | Min:-1.201 Max:0.587 | 0.01 | 0.0001 | | teacher.backbone.layer3.3.conv1.weight | N | 256X1024X1X1 | Min:-0.194 Max:0.295 | 0.01 | 0.0001 | | teacher.backbone.layer3.3.bn1.weight | N | 256 | Min:0.442 Max:1.353 | 0.01 | 0.0001 | | teacher.backbone.layer3.3.bn1.bias | N | 256 | Min:-2.322 Max:0.509 | 0.01 | 0.0001 | | teacher.backbone.layer3.3.conv2.weight | N | 256X256X3X3 | Min:-0.201 Max:0.176 | 0.01 | 0.0001 | | teacher.backbone.layer3.3.bn2.weight | N | 256 | Min:0.529 Max:1.939 | 0.01 | 0.0001 | | teacher.backbone.layer3.3.bn2.bias | N | 256 | Min:-1.610 Max:0.776 | 0.01 | 0.0001 | | teacher.backbone.layer3.3.conv3.weight | N | 1024X256X1X1 | Min:-0.205 Max:0.239 | 0.01 | 0.0001 | | teacher.backbone.layer3.3.bn3.weight | N | 1024 | Min:-0.037 Max:1.646 | 0.01 | 0.0001 | | teacher.backbone.layer3.3.bn3.bias | N | 1024 | Min:-1.484 Max:0.344 | 0.01 | 0.0001 | | teacher.backbone.layer3.4.conv1.weight | N | 256X1024X1X1 | Min:-0.226 Max:0.306 | 0.01 | 0.0001 | | teacher.backbone.layer3.4.bn1.weight | N | 256 | Min:0.438 Max:1.446 | 0.01 | 0.0001 | | teacher.backbone.layer3.4.bn1.bias | N | 256 | Min:-2.511 Max:0.557 | 0.01 | 0.0001 | | teacher.backbone.layer3.4.conv2.weight | N | 256X256X3X3 | Min:-0.147 Max:0.223 | 0.01 | 0.0001 | | teacher.backbone.layer3.4.bn2.weight | N | 256 | Min:0.651 Max:1.858 | 0.01 | 0.0001 | | teacher.backbone.layer3.4.bn2.bias | N | 256 | Min:-1.588 Max:0.661 | 0.01 | 0.0001 | | teacher.backbone.layer3.4.conv3.weight | N | 1024X256X1X1 | Min:-0.178 Max:0.265 | 0.01 | 0.0001 | | teacher.backbone.layer3.4.bn3.weight | N | 1024 | Min:-0.001 Max:1.501 | 0.01 | 0.0001 | | teacher.backbone.layer3.4.bn3.bias | N | 1024 | Min:-1.108 Max:0.639 | 0.01 | 0.0001 | | teacher.backbone.layer3.5.conv1.weight | N | 256X1024X1X1 | Min:-0.153 Max:0.330 | 0.01 | 0.0001 | | teacher.backbone.layer3.5.bn1.weight | N | 256 | Min:0.425 Max:1.547 | 0.01 | 0.0001 | | teacher.backbone.layer3.5.bn1.bias | N | 256 | Min:-1.972 Max:0.823 | 0.01 | 0.0001 | | teacher.backbone.layer3.5.conv2.weight | N | 256X256X3X3 | Min:-0.293 Max:0.276 | 0.01 | 0.0001 | | teacher.backbone.layer3.5.bn2.weight | N | 256 | Min:0.650 Max:2.942 | 0.01 | 0.0001 | | teacher.backbone.layer3.5.bn2.bias | N | 256 | Min:-1.093 Max:0.771 | 0.01 | 0.0001 | | teacher.backbone.layer3.5.conv3.weight | N | 1024X256X1X1 | Min:-0.232 Max:0.294 | 0.01 | 0.0001 | | teacher.backbone.layer3.5.bn3.weight | N | 1024 | Min:0.004 Max:1.984 | 0.01 | 0.0001 | | teacher.backbone.layer3.5.bn3.bias | N | 1024 | Min:-1.636 Max:1.250 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.conv1.weight | N | 512X1024X1X1 | Min:-0.184 Max:0.331 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.bn1.weight | N | 512 | Min:0.535 Max:1.594 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.bn1.bias | N | 512 | Min:-1.756 Max:0.288 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.conv2.weight | N | 512X512X3X3 | Min:-0.175 Max:0.272 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.bn2.weight | N | 512 | Min:0.456 Max:1.542 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.bn2.bias | N | 512 | Min:-1.820 Max:0.839 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.conv3.weight | N | 2048X512X1X1 | Min:-0.332 Max:0.432 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.bn3.weight | N | 2048 | Min:0.888 Max:3.492 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.bn3.bias | N | 2048 | Min:-1.810 Max:0.980 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.downsample.0.weight | N | 2048X1024X1X1 | Min:-0.622 Max:0.465 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.downsample.1.weight | N | 2048 | Min:0.261 Max:4.575 | 0.01 | 0.0001 | | teacher.backbone.layer4.0.downsample.1.bias | N | 2048 | Min:-1.810 Max:0.980 | 0.01 | 0.0001 | | teacher.backbone.layer4.1.conv1.weight | N | 512X2048X1X1 | Min:-0.316 Max:0.577 | 0.01 | 0.0001 | | teacher.backbone.layer4.1.bn1.weight | N | 512 | Min:0.398 Max:1.429 | 0.01 | 0.0001 | | teacher.backbone.layer4.1.bn1.bias | N | 512 | Min:-1.380 Max:0.428 | 0.01 | 0.0001 | | teacher.backbone.layer4.1.conv2.weight | N | 512X512X3X3 | Min:-0.217 Max:0.284 | 0.01 | 0.0001 | | teacher.backbone.layer4.1.bn2.weight | N | 512 | Min:0.349 Max:1.550 | 0.01 | 0.0001 | | teacher.backbone.layer4.1.bn2.bias | N | 512 | Min:-1.867 Max:0.880 | 0.01 | 0.0001 | | teacher.backbone.layer4.1.conv3.weight | N | 2048X512X1X1 | Min:-0.200 Max:0.277 | 0.01 | 0.0001 | | teacher.backbone.layer4.1.bn3.weight | N | 2048 | Min:0.574 Max:2.847 | 0.01 | 0.0001 | | teacher.backbone.layer4.1.bn3.bias | N | 2048 | Min:-2.638 Max:0.544 | 0.01 | 0.0001 | | teacher.backbone.layer4.2.conv1.weight | N | 512X2048X1X1 | Min:-0.289 Max:0.514 | 0.01 | 0.0001 | | teacher.backbone.layer4.2.bn1.weight | N | 512 | Min:0.366 Max:1.249 | 0.01 | 0.0001 | | teacher.backbone.layer4.2.bn1.bias | N | 512 | Min:-1.664 Max:0.753 | 0.01 | 0.0001 | | teacher.backbone.layer4.2.conv2.weight | N | 512X512X3X3 | Min:-0.142 Max:0.144 | 0.01 | 0.0001 | | teacher.backbone.layer4.2.bn2.weight | N | 512 | Min:0.516 Max:1.335 | 0.01 | 0.0001 | | teacher.backbone.layer4.2.bn2.bias | N | 512 | Min:-1.871 Max:1.181 | 0.01 | 0.0001 | | teacher.backbone.layer4.2.conv3.weight | N | 2048X512X1X1 | Min:-0.135 Max:0.300 | 0.01 | 0.0001 | | teacher.backbone.layer4.2.bn3.weight | N | 2048 | Min:0.435 Max:3.073 | 0.01 | 0.0001 | | teacher.backbone.layer4.2.bn3.bias | N | 2048 | Min:-3.885 Max:-0.249 | 0.01 | 0.0001 | | teacher.neck.lateral_convs.0.conv.weight | N | 256X256X1X1 | Min:-0.108 Max:0.108 | 0.01 | 0.0001 | | teacher.neck.lateral_convs.0.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.neck.lateral_convs.1.conv.weight | N | 256X512X1X1 | Min:-0.088 Max:0.088 | 0.01 | 0.0001 | | teacher.neck.lateral_convs.1.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.neck.lateral_convs.2.conv.weight | N | 256X1024X1X1 | Min:-0.068 Max:0.068 | 0.01 | 0.0001 | | teacher.neck.lateral_convs.2.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.neck.lateral_convs.3.conv.weight | N | 256X2048X1X1 | Min:-0.051 Max:0.051 | 0.01 | 0.0001 | | teacher.neck.lateral_convs.3.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.neck.fpn_convs.0.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | | teacher.neck.fpn_convs.0.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.neck.fpn_convs.1.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | | teacher.neck.fpn_convs.1.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.neck.fpn_convs.2.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | | teacher.neck.fpn_convs.2.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.neck.fpn_convs.3.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | | teacher.neck.fpn_convs.3.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.rpn_head.rpn_conv.weight | N | 256X256X3X3 | Min:-0.046 Max:0.050 | 0.01 | 0.0001 | | teacher.rpn_head.rpn_conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.rpn_head.rpn_cls.weight | N | 3X256X1X1 | Min:-0.034 Max:0.028 | 0.01 | 0.0001 | | teacher.rpn_head.rpn_cls.bias | N | 3 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.rpn_head.rpn_reg.weight | N | 12X256X1X1 | Min:-0.034 Max:0.039 | 0.01 | 0.0001 | | teacher.rpn_head.rpn_reg.bias | N | 12 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.roi_head.bbox_head.fc_cls.weight | N | 81X1024 | Min:-0.177 Max:0.196 | 0.01 | 0.0001 | | teacher.roi_head.bbox_head.fc_cls.bias | N | 81 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.roi_head.bbox_head.fc_reg.weight | N | 320X1024 | Min:-0.185 Max:0.207 | 0.01 | 0.0001 | | teacher.roi_head.bbox_head.fc_reg.bias | N | 320 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.roi_head.bbox_head.shared_fcs.0.weight | N | 1024X12544 | Min:-0.068 Max:0.062 | 0.01 | 0.0001 | | teacher.roi_head.bbox_head.shared_fcs.0.bias | N | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | teacher.roi_head.bbox_head.shared_fcs.1.weight | N | 1024X1024 | Min:-0.144 Max:0.147 | 0.01 | 0.0001 | | teacher.roi_head.bbox_head.shared_fcs.1.bias | N | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.backbone.conv1.weight | N | 64X3X7X7 | Min:-0.671 Max:0.704 | 0.01 | 0.0001 | | student.backbone.bn1.weight | N | 64 | Min:0.513 Max:2.669 | 0.01 | 0.0001 | | student.backbone.bn1.bias | N | 64 | Min:-2.654 Max:6.354 | 0.01 | 0.0001 | | student.backbone.layer1.0.conv1.weight | N | 64X64X1X1 | Min:-0.717 Max:0.392 | 0.01 | 0.0001 | | student.backbone.layer1.0.bn1.weight | N | 64 | Min:0.509 Max:2.066 | 0.01 | 0.0001 | | student.backbone.layer1.0.bn1.bias | N | 64 | Min:-2.411 Max:3.608 | 0.01 | 0.0001 | | student.backbone.layer1.0.conv2.weight | N | 64X64X3X3 | Min:-0.390 Max:0.364 | 0.01 | 0.0001 | | student.backbone.layer1.0.bn2.weight | N | 64 | Min:0.420 Max:2.530 | 0.01 | 0.0001 | | student.backbone.layer1.0.bn2.bias | N | 64 | Min:-2.286 Max:5.913 | 0.01 | 0.0001 | | student.backbone.layer1.0.conv3.weight | N | 256X64X1X1 | Min:-0.397 Max:0.348 | 0.01 | 0.0001 | | student.backbone.layer1.0.bn3.weight | N | 256 | Min:0.011 Max:2.820 | 0.01 | 0.0001 | | student.backbone.layer1.0.bn3.bias | N | 256 | Min:-1.126 Max:1.522 | 0.01 | 0.0001 | | student.backbone.layer1.0.downsample.0.weight | N | 256X64X1X1 | Min:-0.772 Max:0.900 | 0.01 | 0.0001 | | student.backbone.layer1.0.downsample.1.weight | N | 256 | Min:0.004 Max:3.064 | 0.01 | 0.0001 | | student.backbone.layer1.0.downsample.1.bias | N | 256 | Min:-1.126 Max:1.522 | 0.01 | 0.0001 | | student.backbone.layer1.1.conv1.weight | N | 64X256X1X1 | Min:-0.297 Max:0.220 | 0.01 | 0.0001 | | student.backbone.layer1.1.bn1.weight | N | 64 | Min:0.746 Max:1.949 | 0.01 | 0.0001 | | student.backbone.layer1.1.bn1.bias | N | 64 | Min:-1.688 Max:1.578 | 0.01 | 0.0001 | | student.backbone.layer1.1.conv2.weight | N | 64X64X3X3 | Min:-0.240 Max:0.318 | 0.01 | 0.0001 | | student.backbone.layer1.1.bn2.weight | N | 64 | Min:0.621 Max:1.618 | 0.01 | 0.0001 | | student.backbone.layer1.1.bn2.bias | N | 64 | Min:-2.003 Max:2.398 | 0.01 | 0.0001 | | student.backbone.layer1.1.conv3.weight | N | 256X64X1X1 | Min:-0.240 Max:0.280 | 0.01 | 0.0001 | | student.backbone.layer1.1.bn3.weight | N | 256 | Min:-0.017 Max:2.130 | 0.01 | 0.0001 | | student.backbone.layer1.1.bn3.bias | N | 256 | Min:-1.711 Max:1.291 | 0.01 | 0.0001 | | student.backbone.layer1.2.conv1.weight | N | 64X256X1X1 | Min:-0.210 Max:0.264 | 0.01 | 0.0001 | | student.backbone.layer1.2.bn1.weight | N | 64 | Min:0.574 Max:1.688 | 0.01 | 0.0001 | | student.backbone.layer1.2.bn1.bias | N | 64 | Min:-1.876 Max:1.090 | 0.01 | 0.0001 | | student.backbone.layer1.2.conv2.weight | N | 64X64X3X3 | Min:-0.218 Max:0.201 | 0.01 | 0.0001 | | student.backbone.layer1.2.bn2.weight | N | 64 | Min:0.757 Max:1.649 | 0.01 | 0.0001 | | student.backbone.layer1.2.bn2.bias | N | 64 | Min:-2.221 Max:1.878 | 0.01 | 0.0001 | | student.backbone.layer1.2.conv3.weight | N | 256X64X1X1 | Min:-0.275 Max:0.350 | 0.01 | 0.0001 | | student.backbone.layer1.2.bn3.weight | N | 256 | Min:-0.058 Max:2.154 | 0.01 | 0.0001 | | student.backbone.layer1.2.bn3.bias | N | 256 | Min:-1.570 Max:1.535 | 0.01 | 0.0001 | | student.backbone.layer2.0.conv1.weight | Y | 128X256X1X1 | Min:-0.334 Max:0.300 | 0.01 | 0.0001 | | student.backbone.layer2.0.bn1.weight | N | 128 | Min:0.610 Max:1.642 | 0.01 | 0.0001 | | student.backbone.layer2.0.bn1.bias | N | 128 | Min:-1.579 Max:1.449 | 0.01 | 0.0001 | | student.backbone.layer2.0.conv2.weight | Y | 128X128X3X3 | Min:-0.384 Max:0.377 | 0.01 | 0.0001 | | student.backbone.layer2.0.bn2.weight | N | 128 | Min:0.605 Max:1.622 | 0.01 | 0.0001 | | student.backbone.layer2.0.bn2.bias | N | 128 | Min:-2.768 Max:1.747 | 0.01 | 0.0001 | | student.backbone.layer2.0.conv3.weight | Y | 512X128X1X1 | Min:-0.374 Max:0.434 | 0.01 | 0.0001 | | student.backbone.layer2.0.bn3.weight | N | 512 | Min:-0.007 Max:2.730 | 0.01 | 0.0001 | | student.backbone.layer2.0.bn3.bias | N | 512 | Min:-1.545 Max:1.256 | 0.01 | 0.0001 | | student.backbone.layer2.0.downsample.0.weight | Y | 512X256X1X1 | Min:-0.466 Max:0.642 | 0.01 | 0.0001 | | student.backbone.layer2.0.downsample.1.weight | N | 512 | Min:0.006 Max:2.552 | 0.01 | 0.0001 | | student.backbone.layer2.0.downsample.1.bias | N | 512 | Min:-1.545 Max:1.256 | 0.01 | 0.0001 | | student.backbone.layer2.1.conv1.weight | Y | 128X512X1X1 | Min:-0.162 Max:0.195 | 0.01 | 0.0001 | | student.backbone.layer2.1.bn1.weight | N | 128 | Min:0.578 Max:1.429 | 0.01 | 0.0001 | | student.backbone.layer2.1.bn1.bias | N | 128 | Min:-4.348 Max:0.588 | 0.01 | 0.0001 | | student.backbone.layer2.1.conv2.weight | Y | 128X128X3X3 | Min:-0.176 Max:0.177 | 0.01 | 0.0001 | | student.backbone.layer2.1.bn2.weight | N | 128 | Min:0.511 Max:1.794 | 0.01 | 0.0001 | | student.backbone.layer2.1.bn2.bias | N | 128 | Min:-3.825 Max:1.343 | 0.01 | 0.0001 | | student.backbone.layer2.1.conv3.weight | Y | 512X128X1X1 | Min:-0.344 Max:0.336 | 0.01 | 0.0001 | | student.backbone.layer2.1.bn3.weight | N | 512 | Min:-0.072 Max:2.122 | 0.01 | 0.0001 | | student.backbone.layer2.1.bn3.bias | N | 512 | Min:-1.502 Max:1.166 | 0.01 | 0.0001 | | student.backbone.layer2.2.conv1.weight | Y | 128X512X1X1 | Min:-0.330 Max:0.369 | 0.01 | 0.0001 | | student.backbone.layer2.2.bn1.weight | N | 128 | Min:0.406 Max:1.696 | 0.01 | 0.0001 | | student.backbone.layer2.2.bn1.bias | N | 128 | Min:-2.696 Max:1.944 | 0.01 | 0.0001 | | student.backbone.layer2.2.conv2.weight | Y | 128X128X3X3 | Min:-0.326 Max:0.374 | 0.01 | 0.0001 | | student.backbone.layer2.2.bn2.weight | N | 128 | Min:0.460 Max:2.179 | 0.01 | 0.0001 | | student.backbone.layer2.2.bn2.bias | N | 128 | Min:-1.587 Max:0.589 | 0.01 | 0.0001 | | student.backbone.layer2.2.conv3.weight | Y | 512X128X1X1 | Min:-0.288 Max:0.232 | 0.01 | 0.0001 | | student.backbone.layer2.2.bn3.weight | N | 512 | Min:-0.006 Max:3.043 | 0.01 | 0.0001 | | student.backbone.layer2.2.bn3.bias | N | 512 | Min:-2.369 Max:0.440 | 0.01 | 0.0001 | | student.backbone.layer2.3.conv1.weight | Y | 128X512X1X1 | Min:-0.298 Max:0.346 | 0.01 | 0.0001 | | student.backbone.layer2.3.bn1.weight | N | 128 | Min:0.736 Max:2.394 | 0.01 | 0.0001 | | student.backbone.layer2.3.bn1.bias | N | 128 | Min:-2.643 Max:0.756 | 0.01 | 0.0001 | | student.backbone.layer2.3.conv2.weight | Y | 128X128X3X3 | Min:-0.272 Max:0.208 | 0.01 | 0.0001 | | student.backbone.layer2.3.bn2.weight | N | 128 | Min:0.682 Max:1.694 | 0.01 | 0.0001 | | student.backbone.layer2.3.bn2.bias | N | 128 | Min:-1.365 Max:1.599 | 0.01 | 0.0001 | | student.backbone.layer2.3.conv3.weight | Y | 512X128X1X1 | Min:-0.279 Max:0.281 | 0.01 | 0.0001 | | student.backbone.layer2.3.bn3.weight | N | 512 | Min:-0.009 Max:1.721 | 0.01 | 0.0001 | | student.backbone.layer2.3.bn3.bias | N | 512 | Min:-1.897 Max:1.182 | 0.01 | 0.0001 | | student.backbone.layer3.0.conv1.weight | Y | 256X512X1X1 | Min:-0.230 Max:0.341 | 0.01 | 0.0001 | | student.backbone.layer3.0.bn1.weight | N | 256 | Min:0.621 Max:1.636 | 0.01 | 0.0001 | | student.backbone.layer3.0.bn1.bias | N | 256 | Min:-1.420 Max:0.917 | 0.01 | 0.0001 | | student.backbone.layer3.0.conv2.weight | Y | 256X256X3X3 | Min:-0.267 Max:0.179 | 0.01 | 0.0001 | | student.backbone.layer3.0.bn2.weight | N | 256 | Min:0.585 Max:1.749 | 0.01 | 0.0001 | | student.backbone.layer3.0.bn2.bias | N | 256 | Min:-1.837 Max:1.398 | 0.01 | 0.0001 | | student.backbone.layer3.0.conv3.weight | Y | 1024X256X1X1 | Min:-0.333 Max:0.384 | 0.01 | 0.0001 | | student.backbone.layer3.0.bn3.weight | N | 1024 | Min:0.071 Max:2.367 | 0.01 | 0.0001 | | student.backbone.layer3.0.bn3.bias | N | 1024 | Min:-0.938 Max:0.887 | 0.01 | 0.0001 | | student.backbone.layer3.0.downsample.0.weight | Y | 1024X512X1X1 | Min:-0.333 Max:0.421 | 0.01 | 0.0001 | | student.backbone.layer3.0.downsample.1.weight | N | 1024 | Min:0.034 Max:2.779 | 0.01 | 0.0001 | | student.backbone.layer3.0.downsample.1.bias | N | 1024 | Min:-0.938 Max:0.887 | 0.01 | 0.0001 | | student.backbone.layer3.1.conv1.weight | Y | 256X1024X1X1 | Min:-0.197 Max:0.236 | 0.01 | 0.0001 | | student.backbone.layer3.1.bn1.weight | N | 256 | Min:0.566 Max:1.743 | 0.01 | 0.0001 | | student.backbone.layer3.1.bn1.bias | N | 256 | Min:-2.703 Max:1.042 | 0.01 | 0.0001 | | student.backbone.layer3.1.conv2.weight | Y | 256X256X3X3 | Min:-0.436 Max:0.196 | 0.01 | 0.0001 | | student.backbone.layer3.1.bn2.weight | N | 256 | Min:0.515 Max:2.301 | 0.01 | 0.0001 | | student.backbone.layer3.1.bn2.bias | N | 256 | Min:-2.548 Max:1.856 | 0.01 | 0.0001 | | student.backbone.layer3.1.conv3.weight | Y | 1024X256X1X1 | Min:-0.438 Max:0.295 | 0.01 | 0.0001 | | student.backbone.layer3.1.bn3.weight | N | 1024 | Min:0.055 Max:1.943 | 0.01 | 0.0001 | | student.backbone.layer3.1.bn3.bias | N | 1024 | Min:-1.647 Max:1.016 | 0.01 | 0.0001 | | student.backbone.layer3.2.conv1.weight | Y | 256X1024X1X1 | Min:-0.387 Max:0.337 | 0.01 | 0.0001 | | student.backbone.layer3.2.bn1.weight | N | 256 | Min:0.463 Max:1.886 | 0.01 | 0.0001 | | student.backbone.layer3.2.bn1.bias | N | 256 | Min:-2.399 Max:0.488 | 0.01 | 0.0001 | | student.backbone.layer3.2.conv2.weight | Y | 256X256X3X3 | Min:-0.165 Max:0.258 | 0.01 | 0.0001 | | student.backbone.layer3.2.bn2.weight | N | 256 | Min:0.555 Max:1.901 | 0.01 | 0.0001 | | student.backbone.layer3.2.bn2.bias | N | 256 | Min:-1.655 Max:0.704 | 0.01 | 0.0001 | | student.backbone.layer3.2.conv3.weight | Y | 1024X256X1X1 | Min:-0.290 Max:0.261 | 0.01 | 0.0001 | | student.backbone.layer3.2.bn3.weight | N | 1024 | Min:0.049 Max:1.450 | 0.01 | 0.0001 | | student.backbone.layer3.2.bn3.bias | N | 1024 | Min:-1.201 Max:0.587 | 0.01 | 0.0001 | | student.backbone.layer3.3.conv1.weight | Y | 256X1024X1X1 | Min:-0.194 Max:0.295 | 0.01 | 0.0001 | | student.backbone.layer3.3.bn1.weight | N | 256 | Min:0.442 Max:1.353 | 0.01 | 0.0001 | | student.backbone.layer3.3.bn1.bias | N | 256 | Min:-2.322 Max:0.509 | 0.01 | 0.0001 | | student.backbone.layer3.3.conv2.weight | Y | 256X256X3X3 | Min:-0.201 Max:0.176 | 0.01 | 0.0001 | | student.backbone.layer3.3.bn2.weight | N | 256 | Min:0.529 Max:1.939 | 0.01 | 0.0001 | | student.backbone.layer3.3.bn2.bias | N | 256 | Min:-1.610 Max:0.776 | 0.01 | 0.0001 | | student.backbone.layer3.3.conv3.weight | Y | 1024X256X1X1 | Min:-0.205 Max:0.239 | 0.01 | 0.0001 | | student.backbone.layer3.3.bn3.weight | N | 1024 | Min:-0.037 Max:1.646 | 0.01 | 0.0001 | | student.backbone.layer3.3.bn3.bias | N | 1024 | Min:-1.484 Max:0.344 | 0.01 | 0.0001 | | student.backbone.layer3.4.conv1.weight | Y | 256X1024X1X1 | Min:-0.226 Max:0.306 | 0.01 | 0.0001 | | student.backbone.layer3.4.bn1.weight | N | 256 | Min:0.438 Max:1.446 | 0.01 | 0.0001 | | student.backbone.layer3.4.bn1.bias | N | 256 | Min:-2.511 Max:0.557 | 0.01 | 0.0001 | | student.backbone.layer3.4.conv2.weight | Y | 256X256X3X3 | Min:-0.147 Max:0.223 | 0.01 | 0.0001 | | student.backbone.layer3.4.bn2.weight | N | 256 | Min:0.651 Max:1.858 | 0.01 | 0.0001 | | student.backbone.layer3.4.bn2.bias | N | 256 | Min:-1.588 Max:0.661 | 0.01 | 0.0001 | | student.backbone.layer3.4.conv3.weight | Y | 1024X256X1X1 | Min:-0.178 Max:0.265 | 0.01 | 0.0001 | | student.backbone.layer3.4.bn3.weight | N | 1024 | Min:-0.001 Max:1.501 | 0.01 | 0.0001 | | student.backbone.layer3.4.bn3.bias | N | 1024 | Min:-1.108 Max:0.639 | 0.01 | 0.0001 | | student.backbone.layer3.5.conv1.weight | Y | 256X1024X1X1 | Min:-0.153 Max:0.330 | 0.01 | 0.0001 | | student.backbone.layer3.5.bn1.weight | N | 256 | Min:0.425 Max:1.547 | 0.01 | 0.0001 | | student.backbone.layer3.5.bn1.bias | N | 256 | Min:-1.972 Max:0.823 | 0.01 | 0.0001 | | student.backbone.layer3.5.conv2.weight | Y | 256X256X3X3 | Min:-0.293 Max:0.276 | 0.01 | 0.0001 | | student.backbone.layer3.5.bn2.weight | N | 256 | Min:0.650 Max:2.942 | 0.01 | 0.0001 | | student.backbone.layer3.5.bn2.bias | N | 256 | Min:-1.093 Max:0.771 | 0.01 | 0.0001 | | student.backbone.layer3.5.conv3.weight | Y | 1024X256X1X1 | Min:-0.232 Max:0.294 | 0.01 | 0.0001 | | student.backbone.layer3.5.bn3.weight | N | 1024 | Min:0.004 Max:1.984 | 0.01 | 0.0001 | | student.backbone.layer3.5.bn3.bias | N | 1024 | Min:-1.636 Max:1.250 | 0.01 | 0.0001 | | student.backbone.layer4.0.conv1.weight | Y | 512X1024X1X1 | Min:-0.184 Max:0.331 | 0.01 | 0.0001 | | student.backbone.layer4.0.bn1.weight | N | 512 | Min:0.535 Max:1.594 | 0.01 | 0.0001 | | student.backbone.layer4.0.bn1.bias | N | 512 | Min:-1.756 Max:0.288 | 0.01 | 0.0001 | | student.backbone.layer4.0.conv2.weight | Y | 512X512X3X3 | Min:-0.175 Max:0.272 | 0.01 | 0.0001 | | student.backbone.layer4.0.bn2.weight | N | 512 | Min:0.456 Max:1.542 | 0.01 | 0.0001 | | student.backbone.layer4.0.bn2.bias | N | 512 | Min:-1.820 Max:0.839 | 0.01 | 0.0001 | | student.backbone.layer4.0.conv3.weight | Y | 2048X512X1X1 | Min:-0.332 Max:0.432 | 0.01 | 0.0001 | | student.backbone.layer4.0.bn3.weight | N | 2048 | Min:0.888 Max:3.492 | 0.01 | 0.0001 | | student.backbone.layer4.0.bn3.bias | N | 2048 | Min:-1.810 Max:0.980 | 0.01 | 0.0001 | | student.backbone.layer4.0.downsample.0.weight | Y | 2048X1024X1X1 | Min:-0.622 Max:0.465 | 0.01 | 0.0001 | | student.backbone.layer4.0.downsample.1.weight | N | 2048 | Min:0.261 Max:4.575 | 0.01 | 0.0001 | | student.backbone.layer4.0.downsample.1.bias | N | 2048 | Min:-1.810 Max:0.980 | 0.01 | 0.0001 | | student.backbone.layer4.1.conv1.weight | Y | 512X2048X1X1 | Min:-0.316 Max:0.577 | 0.01 | 0.0001 | | student.backbone.layer4.1.bn1.weight | N | 512 | Min:0.398 Max:1.429 | 0.01 | 0.0001 | | student.backbone.layer4.1.bn1.bias | N | 512 | Min:-1.380 Max:0.428 | 0.01 | 0.0001 | | student.backbone.layer4.1.conv2.weight | Y | 512X512X3X3 | Min:-0.217 Max:0.284 | 0.01 | 0.0001 | | student.backbone.layer4.1.bn2.weight | N | 512 | Min:0.349 Max:1.550 | 0.01 | 0.0001 | | student.backbone.layer4.1.bn2.bias | N | 512 | Min:-1.867 Max:0.880 | 0.01 | 0.0001 | | student.backbone.layer4.1.conv3.weight | Y | 2048X512X1X1 | Min:-0.200 Max:0.277 | 0.01 | 0.0001 | | student.backbone.layer4.1.bn3.weight | N | 2048 | Min:0.574 Max:2.847 | 0.01 | 0.0001 | | student.backbone.layer4.1.bn3.bias | N | 2048 | Min:-2.638 Max:0.544 | 0.01 | 0.0001 | | student.backbone.layer4.2.conv1.weight | Y | 512X2048X1X1 | Min:-0.289 Max:0.514 | 0.01 | 0.0001 | | student.backbone.layer4.2.bn1.weight | N | 512 | Min:0.366 Max:1.249 | 0.01 | 0.0001 | | student.backbone.layer4.2.bn1.bias | N | 512 | Min:-1.664 Max:0.753 | 0.01 | 0.0001 | | student.backbone.layer4.2.conv2.weight | Y | 512X512X3X3 | Min:-0.142 Max:0.144 | 0.01 | 0.0001 | | student.backbone.layer4.2.bn2.weight | N | 512 | Min:0.516 Max:1.335 | 0.01 | 0.0001 | | student.backbone.layer4.2.bn2.bias | N | 512 | Min:-1.871 Max:1.181 | 0.01 | 0.0001 | | student.backbone.layer4.2.conv3.weight | Y | 2048X512X1X1 | Min:-0.135 Max:0.300 | 0.01 | 0.0001 | | student.backbone.layer4.2.bn3.weight | N | 2048 | Min:0.435 Max:3.073 | 0.01 | 0.0001 | | student.backbone.layer4.2.bn3.bias | N | 2048 | Min:-3.885 Max:-0.249 | 0.01 | 0.0001 | | student.neck.lateral_convs.0.conv.weight | Y | 256X256X1X1 | Min:-0.108 Max:0.108 | 0.01 | 0.0001 | | student.neck.lateral_convs.0.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.neck.lateral_convs.1.conv.weight | Y | 256X512X1X1 | Min:-0.088 Max:0.088 | 0.01 | 0.0001 | | student.neck.lateral_convs.1.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.neck.lateral_convs.2.conv.weight | Y | 256X1024X1X1 | Min:-0.068 Max:0.068 | 0.01 | 0.0001 | | student.neck.lateral_convs.2.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.neck.lateral_convs.3.conv.weight | Y | 256X2048X1X1 | Min:-0.051 Max:0.051 | 0.01 | 0.0001 | | student.neck.lateral_convs.3.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.neck.fpn_convs.0.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | | student.neck.fpn_convs.0.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.neck.fpn_convs.1.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | | student.neck.fpn_convs.1.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.neck.fpn_convs.2.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | | student.neck.fpn_convs.2.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.neck.fpn_convs.3.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | | student.neck.fpn_convs.3.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.rpn_head.rpn_conv.weight | Y | 256X256X3X3 | Min:-0.051 Max:0.052 | 0.01 | 0.0001 | | student.rpn_head.rpn_conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.rpn_head.rpn_cls.weight | Y | 3X256X1X1 | Min:-0.030 Max:0.033 | 0.01 | 0.0001 | | student.rpn_head.rpn_cls.bias | Y | 3 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.rpn_head.rpn_reg.weight | Y | 12X256X1X1 | Min:-0.039 Max:0.035 | 0.01 | 0.0001 | | student.rpn_head.rpn_reg.bias | Y | 12 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.roi_head.bbox_head.fc_cls.weight | Y | 81X1024 | Min:-0.168 Max:0.177 | 0.01 | 0.0001 | | student.roi_head.bbox_head.fc_cls.bias | Y | 81 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.roi_head.bbox_head.fc_reg.weight | Y | 320X1024 | Min:-0.171 Max:0.177 | 0.01 | 0.0001 | | student.roi_head.bbox_head.fc_reg.bias | Y | 320 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.roi_head.bbox_head.shared_fcs.0.weight | Y | 1024X12544 | Min:-0.062 Max:0.062 | 0.01 | 0.0001 | | student.roi_head.bbox_head.shared_fcs.0.bias | Y | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | | student.roi_head.bbox_head.shared_fcs.1.weight | Y | 1024X1024 | Min:-0.145 Max:0.147 | 0.01 | 0.0001 | | student.roi_head.bbox_head.shared_fcs.1.bias | Y | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | +------------------------------------------------+-----------+---------------+-----------------------+------+--------+

len(self) 29320 len(indices) 20488 Traceback (most recent call last): File "tools/train.py", line 198, in main() File "tools/train.py", line 193, in main meta=meta, File "/data6/ziqiwen/code/softteacher/ssod/apis/train.py", line 206, in train_detector runner.run(data_loaders, cfg.workflow) File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/mmcv/runner/iter_based_runner.py", line 117, in run iter_loaders = [IterLoader(x) for x in data_loaders] File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/mmcv/runner/iter_based_runner.py", line 117, in iter_loaders = [IterLoader(x) for x in data_loaders] File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/mmcv/runner/iter_based_runner.py", line 23, in init self.iter_loader = iter(self._dataloader) File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 291, in iter return _MultiProcessingDataLoaderIter(self) File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 764, in init self._try_put_index() File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 994, in _try_put_index index = self._next_index() File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 357, in _next_index return next(self._sampler_iter) # may raise StopIteration File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/utils/data/sampler.py", line 208, in iter for idx in self.sampler: File "/data6/ziqiwen/code/softteacher/ssod/datasets/samplers/semi_sampler.py", line 188, in iter assert len(indices) == len(self) AssertionError Traceback (most recent call last): File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/distributed/launch.py", line 261, in main() File "/home/ziqiwen/anaconda3/envs/mm/lib/python3.7/site-packages/torch/distributed/launch.py", line 257, in main cmd=cmd) subprocess.CalledProcessError: Command '['/home/ziqiwen/anaconda3/envs/mm/bin/python', '-u', 'tools/train.py', '--local_rank=0', 'configs/soft_teacher/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k.py', '--launcher', 'pytorch']' returned non-zero exit status 1.

MendelXu commented 3 years ago

I am not sure what the problem is. I have tried to change the samplers_per_gpu to 4 like you, but it works well. I will take a deeper look later.

winnerziqi commented 3 years ago

thanks a lot!!!

MendelXu commented 3 years ago

Could you have a look at the json file and check whether correct number of instances is loaded? I have tried to build a similar python environment and similar config but it seems ok.

jackhu-bme commented 3 years ago

I guess the parametyer epoch_length is too small for your dataset since I encountered the same problem in my medical daataset weeks ago and solved this simply by turning it bigger. I haven't carefully look at the sampler code so it's just a simple and maybe unreasonable guess.

jessicametzger commented 3 years ago

I am having this same issue. Regardless of what I set epoch_length to, len(indices) always ends up slightly smaller than len(self)=sum(epoch_length)*samples_per_gpu. Here's my config:

_base_ = [parent_dir+'SoftTeacher/configs/soft_teacher/base.py']

data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train = dict(
        sup = dict(     
            ann_file=parent_dir+sup_data_path+'/train_data/annotations.json',
            img_prefix=parent_dir+sup_data_path+'/train_data/',
            classes=classes
        ),
        unsup = dict(       
            ann_file=parent_dir+unsup_data_path+'/train_data/annotations.json',
            img_prefix=parent_dir+unsup_data_path+'/train_data/',
            classes=classes
        ),
    ),
    val = dict(
        ann_file=parent_dir+sup_data_path+'/val_data/annotations.json',
        img_prefix=parent_dir+sup_data_path+'/val_data/',
        classes=classes
    ),
    test = dict(
        ann_file=parent_dir+sup_data_path+'/val_data/annotations.json',
        img_prefix=parent_dir+sup_data_path+'/val_data/',
        classes=classes
    ),
    sampler=dict(
        train=dict(
            type="SemiBalanceSampler",
            sample_ratio=[1, 4],
            by_prob=True,
            # at_least_one=True,
            epoch_length=1000,
        )
    ),
)

evaluation = dict(interval=1000, metric='bbox', type='SubModulesDistEvalHook')
optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
evaluation = dict(type="SubModulesDistEvalHook", interval=4000)
optimizer = dict(type="SGD", lr=0.01, momentum=0.9, weight_decay=0.0001)
lr_config = dict(step=[3000, 4000])
runner = dict(_delete_=True, type="IterBasedRunner", max_iters=5000)
checkpoint_config = dict(by_epoch=False, interval=1000, max_keep_ckpts=2)

fp16 = dict(loss_scale="dynamic")

log_config = dict(
    interval=49,
    hooks=[
        dict(type="TextLoggerHook", by_epoch=False),
        dict(
            type="WandbLoggerHook",
            init_kwargs=dict(
                project="pre_release",
                name="${cfg_name}",
                config=dict(
                    work_dirs="${work_dir}",
                    total_step="${runner.max_iters}",
                ),
            ),
            by_epoch=False,
        ),
    ],
)
watermellon2018 commented 3 years ago

@jessicametzger I have same problem. Did you solve this?

jessicametzger commented 3 years ago

@watermellon2018 I was able to to fix it by setting by_prob=False in the sampler config. So the bug is somewhere in here.

tahirashehzadi commented 2 years ago

@winnerziqi how you solved this issue? assert len(indices) == len(self) I am getting the same error

alaa-shubbak commented 2 years ago

where did you set self.by_prob =false exactly .. in the code its a part of if loop can you please explain it more ?

alaa-shubbak commented 2 years ago

i got it. in my config, it already set to False . and i still have same problem .. what shall i do ?

xiangtaowong commented 2 years ago

i got it. in my config, it already set to False . and i still have same problem .. what shall i do ?

how did u solve the problem?

alaa-shubbak commented 2 years ago

d u solve the proble

my problem was in the present of mask annotaion, while my dataset dose not have any mask information and annotaion. I removed any part related to mask , and try to train the model gain . for example , i removed ("gt_masks") in this

error mask

i hope this will help you.

xiangtaowong commented 2 years ago

thank u, I'll have a try.