Closed JayYangSS closed 3 years ago
Could you upload the full log?
Could you upload the full log?
"2021-10-21T10:45:16+08:00" [INFO] TASK_NAME=coco-full-train-4gpu-1 "2021-10-21T10:45:16+08:00" USER_NAME=jiyang5 "2021-10-21T10:45:16+08:00" TASKPLATFORM_NAME=train "2021-10-21T10:45:16+08:00" DL_NODE_TYPE=1 "2021-10-21T10:45:16+08:00" DL_HOSTS_LIST=train-coco-full-train-4gpu-1:4 "2021-10-21T10:45:16+08:00" [INFO] localIp is 172.30.43.4 "2021-10-21T10:45:16+08:00" [INFO] single DL_HOST: train-coco-full-train-4gpu-1-0:4 "2021-10-21T10:45:16+08:00" [INFO] get bash path: /bin/bash "2021-10-21T10:45:16+08:00" [INFO] already start process "2021-10-21T10:45:26+08:00" fatal: Not a git repository (or any parent up to mount point /data1) "2021-10-21T10:45:26+08:00" Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set). "2021-10-21T10:45:26+08:00" 2021-10-21 10:45:26,416 - mmdet.ssod - INFO - [<StreamHandler <stderr> (INFO)>, <FileHandler /data1/train_code/SoftTeacher/workdir/soft_teacher_faster_rcnn_r50_caffe_fpn_adas_full_720k/20211021_104526.log (INFO)>] "2021-10-21T10:45:26+08:00" 2021-10-21 10:45:26,416 - mmdet.ssod - INFO - Environment info: "2021-10-21T10:45:26+08:00" ------------------------------------------------------------ "2021-10-21T10:45:26+08:00" sys.platform: linux "2021-10-21T10:45:26+08:00" Python: 3.6.5 |Anaconda, Inc.| (default, Apr 29 2018, 16:14:56) [GCC 7.2.0] "2021-10-21T10:45:26+08:00" CUDA available: True "2021-10-21T10:45:26+08:00" GPU 0,1,2,3: Tesla V100-SXM2-32GB "2021-10-21T10:45:26+08:00" CUDA_HOME: /usr/local/cuda "2021-10-21T10:45:26+08:00" NVCC: Cuda compilation tools, release 10.1, V10.1.243 "2021-10-21T10:45:26+08:00" GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609 "2021-10-21T10:45:26+08:00" PyTorch: 1.5.0+cu101 "2021-10-21T10:45:26+08:00" PyTorch compiling details: PyTorch built with: "2021-10-21T10:45:26+08:00" - GCC 7.3 "2021-10-21T10:45:26+08:00" - C++ Version: 201402 "2021-10-21T10:45:26+08:00" - Intel(R) Math Kernel Library Version 2019.0.5 Product Build 20190808 for Intel(R) 64 architecture applications "2021-10-21T10:45:26+08:00" - Intel(R) MKL-DNN v0.21.1 (Git Hash 7d2fd500bc78936d1d648ca713b901012f470dbc) "2021-10-21T10:45:26+08:00" - OpenMP 201511 (a.k.a. OpenMP 4.5) "2021-10-21T10:45:26+08:00" - NNPACK is enabled "2021-10-21T10:45:26+08:00" - CPU capability usage: AVX2 "2021-10-21T10:45:26+08:00" - CUDA Runtime 10.1 "2021-10-21T10:45:26+08:00" - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37 "2021-10-21T10:45:26+08:00" - CuDNN 7.6.3 "2021-10-21T10:45:26+08:00" - Magma 2.5.2 "2021-10-21T10:45:26+08:00" - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_INTERNAL_THREADPOOL_IMPL -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF, "2021-10-21T10:45:26+08:00" "2021-10-21T10:45:26+08:00" TorchVision: 0.6.0+cu101 "2021-10-21T10:45:26+08:00" OpenCV: 4.4.0 "2021-10-21T10:45:26+08:00" MMCV: 1.3.9 "2021-10-21T10:45:26+08:00" MMCV Compiler: GCC 5.4 "2021-10-21T10:45:26+08:00" MMCV CUDA Compiler: 10.1 "2021-10-21T10:45:26+08:00" MMDetection: 2.16.0+ "2021-10-21T10:45:26+08:00" ------------------------------------------------------------ "2021-10-21T10:45:26+08:00" "2021-10-21T10:45:29+08:00" 2021-10-21 10:45:29,186 - mmdet.ssod - INFO - Distributed training: True "2021-10-21T10:45:31+08:00" 2021-10-21 10:45:31,806 - mmdet.ssod - INFO - Config: "2021-10-21T10:45:31+08:00" model = dict( "2021-10-21T10:45:31+08:00" type='SoftTeacher', "2021-10-21T10:45:31+08:00" model=dict( "2021-10-21T10:45:31+08:00" type='FasterRCNN', "2021-10-21T10:45:31+08:00" backbone=dict( "2021-10-21T10:45:31+08:00" type='ResNet', "2021-10-21T10:45:31+08:00" depth=50, "2021-10-21T10:45:31+08:00" num_stages=4, "2021-10-21T10:45:31+08:00" out_indices=(0, 1, 2, 3), "2021-10-21T10:45:31+08:00" frozen_stages=1, "2021-10-21T10:45:31+08:00" norm_cfg=dict(type='BN', requires_grad=False), "2021-10-21T10:45:31+08:00" norm_eval=True, "2021-10-21T10:45:31+08:00" style='caffe', "2021-10-21T10:45:31+08:00" init_cfg=dict( "2021-10-21T10:45:31+08:00" type='Pretrained', "2021-10-21T10:45:31+08:00" checkpoint='/data1/train_code/model_zoo/resnet50-19c8e357.pth') "2021-10-21T10:45:31+08:00" ), "2021-10-21T10:45:31+08:00" neck=dict( "2021-10-21T10:45:31+08:00" type='FPN', "2021-10-21T10:45:31+08:00" in_channels=[256, 512, 1024, 2048], "2021-10-21T10:45:31+08:00" out_channels=256, "2021-10-21T10:45:31+08:00" num_outs=5), "2021-10-21T10:45:31+08:00" rpn_head=dict( "2021-10-21T10:45:31+08:00" type='RPNHead', "2021-10-21T10:45:31+08:00" in_channels=256, "2021-10-21T10:45:31+08:00" feat_channels=256, "2021-10-21T10:45:31+08:00" anchor_generator=dict( "2021-10-21T10:45:31+08:00" type='AnchorGenerator', "2021-10-21T10:45:31+08:00" scales=[8], "2021-10-21T10:45:31+08:00" ratios=[0.5, 1.0, 2.0], "2021-10-21T10:45:31+08:00" strides=[4, 8, 16, 32, 64]), "2021-10-21T10:45:31+08:00" bbox_coder=dict( "2021-10-21T10:45:31+08:00" type='DeltaXYWHBBoxCoder', "2021-10-21T10:45:31+08:00" target_means=[0.0, 0.0, 0.0, 0.0], "2021-10-21T10:45:31+08:00" target_stds=[1.0, 1.0, 1.0, 1.0]), "2021-10-21T10:45:31+08:00" loss_cls=dict( "2021-10-21T10:45:31+08:00" type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), "2021-10-21T10:45:31+08:00" loss_bbox=dict(type='L1Loss', loss_weight=1.0)), "2021-10-21T10:45:31+08:00" roi_head=dict( "2021-10-21T10:45:31+08:00" type='StandardRoIHead', "2021-10-21T10:45:31+08:00" bbox_roi_extractor=dict( "2021-10-21T10:45:31+08:00" type='SingleRoIExtractor', "2021-10-21T10:45:31+08:00" roi_layer=dict( "2021-10-21T10:45:31+08:00" type='RoIAlign', output_size=7, sampling_ratio=0), "2021-10-21T10:45:31+08:00" out_channels=256, "2021-10-21T10:45:31+08:00" featmap_strides=[4, 8, 16, 32]), "2021-10-21T10:45:31+08:00" bbox_head=dict( "2021-10-21T10:45:31+08:00" type='Shared2FCBBoxHead', "2021-10-21T10:45:31+08:00" in_channels=256, "2021-10-21T10:45:31+08:00" fc_out_channels=1024, "2021-10-21T10:45:31+08:00" roi_feat_size=7, "2021-10-21T10:45:31+08:00" num_classes=80, "2021-10-21T10:45:31+08:00" bbox_coder=dict( "2021-10-21T10:45:31+08:00" type='DeltaXYWHBBoxCoder', "2021-10-21T10:45:31+08:00" target_means=[0.0, 0.0, 0.0, 0.0], "2021-10-21T10:45:31+08:00" target_stds=[0.1, 0.1, 0.2, 0.2]), "2021-10-21T10:45:31+08:00" reg_class_agnostic=False, "2021-10-21T10:45:31+08:00" loss_cls=dict( "2021-10-21T10:45:31+08:00" type='CrossEntropyLoss', "2021-10-21T10:45:31+08:00" use_sigmoid=False, "2021-10-21T10:45:31+08:00" loss_weight=1.0), "2021-10-21T10:45:31+08:00" loss_bbox=dict(type='L1Loss', loss_weight=1.0))), "2021-10-21T10:45:31+08:00" train_cfg=dict( "2021-10-21T10:45:31+08:00" rpn=dict( "2021-10-21T10:45:31+08:00" assigner=dict( "2021-10-21T10:45:31+08:00" type='MaxIoUAssigner', "2021-10-21T10:45:31+08:00" pos_iou_thr=0.7, "2021-10-21T10:45:31+08:00" neg_iou_thr=0.3, "2021-10-21T10:45:31+08:00" min_pos_iou=0.3, "2021-10-21T10:45:31+08:00" match_low_quality=True, "2021-10-21T10:45:31+08:00" ignore_iof_thr=-1), "2021-10-21T10:45:31+08:00" sampler=dict( "2021-10-21T10:45:31+08:00" type='RandomSampler', "2021-10-21T10:45:31+08:00" num=256, "2021-10-21T10:45:31+08:00" pos_fraction=0.5, "2021-10-21T10:45:31+08:00" neg_pos_ub=-1, "2021-10-21T10:45:31+08:00" add_gt_as_proposals=False), "2021-10-21T10:45:31+08:00" allowed_border=-1, "2021-10-21T10:45:31+08:00" pos_weight=-1, "2021-10-21T10:45:31+08:00" debug=False), "2021-10-21T10:45:31+08:00" rpn_proposal=dict( "2021-10-21T10:45:31+08:00" nms_pre=2000, "2021-10-21T10:45:31+08:00" max_per_img=1000, "2021-10-21T10:45:31+08:00" nms=dict(type='nms', iou_threshold=0.7), "2021-10-21T10:45:31+08:00" min_bbox_size=0), "2021-10-21T10:45:31+08:00" rcnn=dict( "2021-10-21T10:45:31+08:00" assigner=dict( "2021-10-21T10:45:31+08:00" type='MaxIoUAssigner', "2021-10-21T10:45:31+08:00" pos_iou_thr=0.5, "2021-10-21T10:45:31+08:00" neg_iou_thr=0.5, "2021-10-21T10:45:31+08:00" min_pos_iou=0.5, "2021-10-21T10:45:31+08:00" match_low_quality=False, "2021-10-21T10:45:31+08:00" ignore_iof_thr=-1), "2021-10-21T10:45:31+08:00" sampler=dict( "2021-10-21T10:45:31+08:00" type='RandomSampler', "2021-10-21T10:45:31+08:00" num=512, "2021-10-21T10:45:31+08:00" pos_fraction=0.25, "2021-10-21T10:45:31+08:00" neg_pos_ub=-1, "2021-10-21T10:45:31+08:00" add_gt_as_proposals=True), "2021-10-21T10:45:31+08:00" pos_weight=-1, "2021-10-21T10:45:31+08:00" debug=False)), "2021-10-21T10:45:31+08:00" test_cfg=dict( "2021-10-21T10:45:31+08:00" rpn=dict( "2021-10-21T10:45:31+08:00" nms_pre=1000, "2021-10-21T10:45:31+08:00" max_per_img=1000, "2021-10-21T10:45:31+08:00" nms=dict(type='nms', iou_threshold=0.7), "2021-10-21T10:45:31+08:00" min_bbox_size=0), "2021-10-21T10:45:31+08:00" rcnn=dict( "2021-10-21T10:45:31+08:00" score_thr=0.05, "2021-10-21T10:45:31+08:00" nms=dict(type='nms', iou_threshold=0.5), "2021-10-21T10:45:31+08:00" max_per_img=100))), "2021-10-21T10:45:31+08:00" train_cfg=dict( "2021-10-21T10:45:31+08:00" use_teacher_proposal=False, "2021-10-21T10:45:31+08:00" pseudo_label_initial_score_thr=0.5, "2021-10-21T10:45:31+08:00" rpn_pseudo_threshold=0.9, "2021-10-21T10:45:31+08:00" cls_pseudo_threshold=0.9, "2021-10-21T10:45:31+08:00" reg_pseudo_threshold=0.01, "2021-10-21T10:45:31+08:00" jitter_times=10, "2021-10-21T10:45:31+08:00" jitter_scale=0.06, "2021-10-21T10:45:31+08:00" min_pseduo_box_size=0, "2021-10-21T10:45:31+08:00" unsup_weight=2.0), "2021-10-21T10:45:31+08:00" test_cfg=dict(inference_on='student')) "2021-10-21T10:45:31+08:00" dataset_type = 'CocoDataset' "2021-10-21T10:45:31+08:00" data_root = '/dataset/public/coco/' "2021-10-21T10:45:31+08:00" img_norm_cfg = dict( "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) "2021-10-21T10:45:31+08:00" train_pipeline = [ "2021-10-21T10:45:31+08:00" dict(type='LoadImageFromFile'), "2021-10-21T10:45:31+08:00" dict(type='LoadAnnotations', with_bbox=True), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Sequential', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='RandResize', "2021-10-21T10:45:31+08:00" img_scale=[(1333, 400), (1333, 1200)], "2021-10-21T10:45:31+08:00" multiscale_mode='range', "2021-10-21T10:45:31+08:00" keep_ratio=True), "2021-10-21T10:45:31+08:00" dict(type='RandFlip', flip_ratio=0.5), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='OneOf', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict(type='Identity'), "2021-10-21T10:45:31+08:00" dict(type='AutoContrast'), "2021-10-21T10:45:31+08:00" dict(type='RandEqualize'), "2021-10-21T10:45:31+08:00" dict(type='RandSolarize'), "2021-10-21T10:45:31+08:00" dict(type='RandColor'), "2021-10-21T10:45:31+08:00" dict(type='RandContrast'), "2021-10-21T10:45:31+08:00" dict(type='RandBrightness'), "2021-10-21T10:45:31+08:00" dict(type='RandSharpness'), "2021-10-21T10:45:31+08:00" dict(type='RandPosterize') "2021-10-21T10:45:31+08:00" ]) "2021-10-21T10:45:31+08:00" ], "2021-10-21T10:45:31+08:00" record=True), "2021-10-21T10:45:31+08:00" dict(type='Pad', size_divisor=32), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Normalize', "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], "2021-10-21T10:45:31+08:00" std=[1.0, 1.0, 1.0], "2021-10-21T10:45:31+08:00" to_rgb=False), "2021-10-21T10:45:31+08:00" dict(type='ExtraAttrs', tag='sup'), "2021-10-21T10:45:31+08:00" dict(type='DefaultFormatBundle'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Collect', "2021-10-21T10:45:31+08:00" keys=['img', 'gt_bboxes', 'gt_labels'], "2021-10-21T10:45:31+08:00" meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', "2021-10-21T10:45:31+08:00" 'pad_shape', 'scale_factor', 'tag')) "2021-10-21T10:45:31+08:00" ] "2021-10-21T10:45:31+08:00" test_pipeline = [ "2021-10-21T10:45:31+08:00" dict(type='LoadImageFromFile'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='MultiScaleFlipAug', "2021-10-21T10:45:31+08:00" img_scale=(1333, 800), "2021-10-21T10:45:31+08:00" flip=False, "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict(type='Resize', keep_ratio=True), "2021-10-21T10:45:31+08:00" dict(type='RandomFlip'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Normalize', "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], "2021-10-21T10:45:31+08:00" std=[1.0, 1.0, 1.0], "2021-10-21T10:45:31+08:00" to_rgb=False), "2021-10-21T10:45:31+08:00" dict(type='Pad', size_divisor=32), "2021-10-21T10:45:31+08:00" dict(type='ImageToTensor', keys=['img']), "2021-10-21T10:45:31+08:00" dict(type='Collect', keys=['img']) "2021-10-21T10:45:31+08:00" ]) "2021-10-21T10:45:31+08:00" ] "2021-10-21T10:45:31+08:00" data = dict( "2021-10-21T10:45:31+08:00" samples_per_gpu=8, "2021-10-21T10:45:31+08:00" workers_per_gpu=4, "2021-10-21T10:45:31+08:00" train=dict( "2021-10-21T10:45:31+08:00" type='SemiDataset', "2021-10-21T10:45:31+08:00" sup=dict( "2021-10-21T10:45:31+08:00" type='CocoDataset', "2021-10-21T10:45:31+08:00" ann_file='/dataset/public/coco/annotations/instances_val2017.json', "2021-10-21T10:45:31+08:00" img_prefix='/dataset/public/coco/images/val2017/', "2021-10-21T10:45:31+08:00" pipeline=[ "2021-10-21T10:45:31+08:00" dict(type='LoadImageFromFile'), "2021-10-21T10:45:31+08:00" dict(type='LoadAnnotations', with_bbox=True), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Sequential', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='RandResize', "2021-10-21T10:45:31+08:00" img_scale=[(1333, 400), (1333, 1200)], "2021-10-21T10:45:31+08:00" multiscale_mode='range', "2021-10-21T10:45:31+08:00" keep_ratio=True), "2021-10-21T10:45:31+08:00" dict(type='RandFlip', flip_ratio=0.5), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='OneOf', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict(type='Identity'), "2021-10-21T10:45:31+08:00" dict(type='AutoContrast'), "2021-10-21T10:45:31+08:00" dict(type='RandEqualize'), "2021-10-21T10:45:31+08:00" dict(type='RandSolarize'), "2021-10-21T10:45:31+08:00" dict(type='RandColor'), "2021-10-21T10:45:31+08:00" dict(type='RandContrast'), "2021-10-21T10:45:31+08:00" dict(type='RandBrightness'), "2021-10-21T10:45:31+08:00" dict(type='RandSharpness'), "2021-10-21T10:45:31+08:00" dict(type='RandPosterize') "2021-10-21T10:45:31+08:00" ]) "2021-10-21T10:45:31+08:00" ], "2021-10-21T10:45:31+08:00" record=True), "2021-10-21T10:45:31+08:00" dict(type='Pad', size_divisor=32), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Normalize', "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], "2021-10-21T10:45:31+08:00" std=[1.0, 1.0, 1.0], "2021-10-21T10:45:31+08:00" to_rgb=False), "2021-10-21T10:45:31+08:00" dict(type='ExtraAttrs', tag='sup'), "2021-10-21T10:45:31+08:00" dict(type='DefaultFormatBundle'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Collect', "2021-10-21T10:45:31+08:00" keys=['img', 'gt_bboxes', 'gt_labels'], "2021-10-21T10:45:31+08:00" meta_keys=('filename', 'ori_shape', 'img_shape', "2021-10-21T10:45:31+08:00" 'img_norm_cfg', 'pad_shape', 'scale_factor', "2021-10-21T10:45:31+08:00" 'tag')) "2021-10-21T10:45:31+08:00" ]), "2021-10-21T10:45:31+08:00" unsup=dict( "2021-10-21T10:45:31+08:00" type='CocoDataset', "2021-10-21T10:45:31+08:00" ann_file= "2021-10-21T10:45:31+08:00" '/dataset/public/coco/annotations/instances_train2017.json', "2021-10-21T10:45:31+08:00" img_prefix='/dataset/public/coco/images/train2017/', "2021-10-21T10:45:31+08:00" pipeline=[ "2021-10-21T10:45:31+08:00" dict(type='LoadImageFromFile'), "2021-10-21T10:45:31+08:00" dict(type='PseudoSamples', with_bbox=True), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='MultiBranch', "2021-10-21T10:45:31+08:00" unsup_teacher=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Sequential', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='RandResize', "2021-10-21T10:45:31+08:00" img_scale=[(1333, 400), (1333, 1200)], "2021-10-21T10:45:31+08:00" multiscale_mode='range', "2021-10-21T10:45:31+08:00" keep_ratio=True), "2021-10-21T10:45:31+08:00" dict(type='RandFlip', flip_ratio=0.5), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='ShuffledSequential', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='OneOf', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict(type='Identity'), "2021-10-21T10:45:31+08:00" dict(type='AutoContrast'), "2021-10-21T10:45:31+08:00" dict(type='RandEqualize'), "2021-10-21T10:45:31+08:00" dict(type='RandSolarize'), "2021-10-21T10:45:31+08:00" dict(type='RandColor'), "2021-10-21T10:45:31+08:00" dict(type='RandContrast'), "2021-10-21T10:45:31+08:00" dict(type='RandBrightness'), "2021-10-21T10:45:31+08:00" dict(type='RandSharpness'), "2021-10-21T10:45:31+08:00" dict(type='RandPosterize') "2021-10-21T10:45:31+08:00" ]), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='OneOf', "2021-10-21T10:45:31+08:00" transforms=[{ "2021-10-21T10:45:31+08:00" 'type': 'RandTranslate', "2021-10-21T10:45:31+08:00" 'x': (-0.1, 0.1) "2021-10-21T10:45:31+08:00" }, { "2021-10-21T10:45:31+08:00" 'type': 'RandTranslate', "2021-10-21T10:45:31+08:00" 'y': (-0.1, 0.1) "2021-10-21T10:45:31+08:00" }, { "2021-10-21T10:45:31+08:00" 'type': 'RandRotate', "2021-10-21T10:45:31+08:00" 'angle': (-30, 30) "2021-10-21T10:45:31+08:00" }, "2021-10-21T10:45:31+08:00" [{ "2021-10-21T10:45:31+08:00" 'type': "2021-10-21T10:45:31+08:00" 'RandShear', "2021-10-21T10:45:31+08:00" 'x': (-30, 30) "2021-10-21T10:45:31+08:00" }, { "2021-10-21T10:45:31+08:00" 'type': "2021-10-21T10:45:31+08:00" 'RandShear', "2021-10-21T10:45:31+08:00" 'y': (-30, 30) "2021-10-21T10:45:31+08:00" }]]) "2021-10-21T10:45:31+08:00" ]), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='RandErase', "2021-10-21T10:45:31+08:00" n_iterations=(1, 5), "2021-10-21T10:45:31+08:00" size=[0, 0.2], "2021-10-21T10:45:31+08:00" squared=True) "2021-10-21T10:45:31+08:00" ], "2021-10-21T10:45:31+08:00" record=True), "2021-10-21T10:45:31+08:00" dict(type='Pad', size_divisor=32), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Normalize', "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], "2021-10-21T10:45:31+08:00" std=[1.0, 1.0, 1.0], "2021-10-21T10:45:31+08:00" to_rgb=False), "2021-10-21T10:45:31+08:00" dict(type='ExtraAttrs', tag='unsup_student'), "2021-10-21T10:45:31+08:00" dict(type='DefaultFormatBundle'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Collect', "2021-10-21T10:45:31+08:00" keys=['img', 'gt_bboxes', 'gt_labels'], "2021-10-21T10:45:31+08:00" meta_keys=('filename', 'ori_shape', 'img_shape', "2021-10-21T10:45:31+08:00" 'img_norm_cfg', 'pad_shape', "2021-10-21T10:45:31+08:00" 'scale_factor', 'tag', "2021-10-21T10:45:31+08:00" 'transform_matrix')) "2021-10-21T10:45:31+08:00" ], "2021-10-21T10:45:31+08:00" unsup_student=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Sequential', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='RandResize', "2021-10-21T10:45:31+08:00" img_scale=[(1333, 400), (1333, 1200)], "2021-10-21T10:45:31+08:00" multiscale_mode='range', "2021-10-21T10:45:31+08:00" keep_ratio=True), "2021-10-21T10:45:31+08:00" dict(type='RandFlip', flip_ratio=0.5) "2021-10-21T10:45:31+08:00" ], "2021-10-21T10:45:31+08:00" record=True), "2021-10-21T10:45:31+08:00" dict(type='Pad', size_divisor=32), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Normalize', "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], "2021-10-21T10:45:31+08:00" std=[1.0, 1.0, 1.0], "2021-10-21T10:45:31+08:00" to_rgb=False), "2021-10-21T10:45:31+08:00" dict(type='ExtraAttrs', tag='unsup_teacher'), "2021-10-21T10:45:31+08:00" dict(type='DefaultFormatBundle'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Collect', "2021-10-21T10:45:31+08:00" keys=['img', 'gt_bboxes', 'gt_labels'], "2021-10-21T10:45:31+08:00" meta_keys=('filename', 'ori_shape', 'img_shape', "2021-10-21T10:45:31+08:00" 'img_norm_cfg', 'pad_shape', "2021-10-21T10:45:31+08:00" 'scale_factor', 'tag', "2021-10-21T10:45:31+08:00" 'transform_matrix')) "2021-10-21T10:45:31+08:00" ]) "2021-10-21T10:45:31+08:00" ], "2021-10-21T10:45:31+08:00" filter_empty_gt=False)), "2021-10-21T10:45:31+08:00" val=dict( "2021-10-21T10:45:31+08:00" type='CocoDataset', "2021-10-21T10:45:31+08:00" ann_file='/dataset/public/coco/annotations/instances_val2017.json', "2021-10-21T10:45:31+08:00" img_prefix='/dataset/public/coco/images/val2017/', "2021-10-21T10:45:31+08:00" pipeline=[ "2021-10-21T10:45:31+08:00" dict(type='LoadImageFromFile'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='MultiScaleFlipAug', "2021-10-21T10:45:31+08:00" img_scale=(1333, 800), "2021-10-21T10:45:31+08:00" flip=False, "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict(type='Resize', keep_ratio=True), "2021-10-21T10:45:31+08:00" dict(type='RandomFlip'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Normalize', "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], "2021-10-21T10:45:31+08:00" std=[1.0, 1.0, 1.0], "2021-10-21T10:45:31+08:00" to_rgb=False), "2021-10-21T10:45:31+08:00" dict(type='Pad', size_divisor=32), "2021-10-21T10:45:31+08:00" dict(type='ImageToTensor', keys=['img']), "2021-10-21T10:45:31+08:00" dict(type='Collect', keys=['img']) "2021-10-21T10:45:31+08:00" ]) "2021-10-21T10:45:31+08:00" ]), "2021-10-21T10:45:31+08:00" test=dict( "2021-10-21T10:45:31+08:00" type='CocoDataset', "2021-10-21T10:45:31+08:00" ann_file='/dataset/public/coco/annotations/instances_val2017.json', "2021-10-21T10:45:31+08:00" img_prefix='/dataset/public/coco/images/val2017/', "2021-10-21T10:45:31+08:00" pipeline=[ "2021-10-21T10:45:31+08:00" dict(type='LoadImageFromFile'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='MultiScaleFlipAug', "2021-10-21T10:45:31+08:00" img_scale=(1333, 800), "2021-10-21T10:45:31+08:00" flip=False, "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict(type='Resize', keep_ratio=True), "2021-10-21T10:45:31+08:00" dict(type='RandomFlip'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Normalize', "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], "2021-10-21T10:45:31+08:00" std=[1.0, 1.0, 1.0], "2021-10-21T10:45:31+08:00" to_rgb=False), "2021-10-21T10:45:31+08:00" dict(type='Pad', size_divisor=32), "2021-10-21T10:45:31+08:00" dict(type='ImageToTensor', keys=['img']), "2021-10-21T10:45:31+08:00" dict(type='Collect', keys=['img']) "2021-10-21T10:45:31+08:00" ]) "2021-10-21T10:45:31+08:00" ]), "2021-10-21T10:45:31+08:00" sampler=dict( "2021-10-21T10:45:31+08:00" train=dict( "2021-10-21T10:45:31+08:00" type='SemiBalanceSampler', "2021-10-21T10:45:31+08:00" sample_ratio=[1, 1], "2021-10-21T10:45:31+08:00" by_prob=True, "2021-10-21T10:45:31+08:00" epoch_length=7330))) "2021-10-21T10:45:31+08:00" evaluation = dict(interval=4000, metric='bbox', type='SubModulesDistEvalHook') "2021-10-21T10:45:31+08:00" optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) "2021-10-21T10:45:31+08:00" optimizer_config = dict(grad_clip=None) "2021-10-21T10:45:31+08:00" lr_config = dict( "2021-10-21T10:45:31+08:00" policy='step', "2021-10-21T10:45:31+08:00" warmup='linear', "2021-10-21T10:45:31+08:00" warmup_iters=500, "2021-10-21T10:45:31+08:00" warmup_ratio=0.001, "2021-10-21T10:45:31+08:00" step=[480000, 640000]) "2021-10-21T10:45:31+08:00" runner = dict(type='IterBasedRunner', max_iters=720000) "2021-10-21T10:45:31+08:00" checkpoint_config = dict(interval=4000, by_epoch=False, max_keep_ckpts=20) "2021-10-21T10:45:31+08:00" log_config = dict( "2021-10-21T10:45:31+08:00" interval=50, "2021-10-21T10:45:31+08:00" hooks=[ "2021-10-21T10:45:31+08:00" dict(type='TextLoggerHook', by_epoch=False), "2021-10-21T10:45:31+08:00" dict(type='TensorboardLoggerHook') "2021-10-21T10:45:31+08:00" ]) "2021-10-21T10:45:31+08:00" custom_hooks = [ "2021-10-21T10:45:31+08:00" dict(type='NumClassCheckHook'), "2021-10-21T10:45:31+08:00" dict(type='WeightSummary'), "2021-10-21T10:45:31+08:00" dict(type='MeanTeacher', momentum=0.999, interval=1, warm_up=0) "2021-10-21T10:45:31+08:00" ] "2021-10-21T10:45:31+08:00" dist_params = dict(backend='nccl') "2021-10-21T10:45:31+08:00" log_level = 'INFO' "2021-10-21T10:45:31+08:00" load_from = None "2021-10-21T10:45:31+08:00" resume_from = None "2021-10-21T10:45:31+08:00" workflow = [('train', 1)] "2021-10-21T10:45:31+08:00" mmdet_base = '../../thirdparty/mmdetection/configs/_base_' "2021-10-21T10:45:31+08:00" strong_pipeline = [ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Sequential', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='RandResize', "2021-10-21T10:45:31+08:00" img_scale=[(1333, 400), (1333, 1200)], "2021-10-21T10:45:31+08:00" multiscale_mode='range', "2021-10-21T10:45:31+08:00" keep_ratio=True), "2021-10-21T10:45:31+08:00" dict(type='RandFlip', flip_ratio=0.5), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='ShuffledSequential', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='OneOf', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict(type='Identity'), "2021-10-21T10:45:31+08:00" dict(type='AutoContrast'), "2021-10-21T10:45:31+08:00" dict(type='RandEqualize'), "2021-10-21T10:45:31+08:00" dict(type='RandSolarize'), "2021-10-21T10:45:31+08:00" dict(type='RandColor'), "2021-10-21T10:45:31+08:00" dict(type='RandContrast'), "2021-10-21T10:45:31+08:00" dict(type='RandBrightness'), "2021-10-21T10:45:31+08:00" dict(type='RandSharpness'), "2021-10-21T10:45:31+08:00" dict(type='RandPosterize') "2021-10-21T10:45:31+08:00" ]), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='OneOf', "2021-10-21T10:45:31+08:00" transforms=[{ "2021-10-21T10:45:31+08:00" 'type': 'RandTranslate', "2021-10-21T10:45:31+08:00" 'x': (-0.1, 0.1) "2021-10-21T10:45:31+08:00" }, { "2021-10-21T10:45:31+08:00" 'type': 'RandTranslate', "2021-10-21T10:45:31+08:00" 'y': (-0.1, 0.1) "2021-10-21T10:45:31+08:00" }, { "2021-10-21T10:45:31+08:00" 'type': 'RandRotate', "2021-10-21T10:45:31+08:00" 'angle': (-30, 30) "2021-10-21T10:45:31+08:00" }, "2021-10-21T10:45:31+08:00" [{ "2021-10-21T10:45:31+08:00" 'type': 'RandShear', "2021-10-21T10:45:31+08:00" 'x': (-30, 30) "2021-10-21T10:45:31+08:00" }, { "2021-10-21T10:45:31+08:00" 'type': 'RandShear', "2021-10-21T10:45:31+08:00" 'y': (-30, 30) "2021-10-21T10:45:31+08:00" }]]) "2021-10-21T10:45:31+08:00" ]), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='RandErase', "2021-10-21T10:45:31+08:00" n_iterations=(1, 5), "2021-10-21T10:45:31+08:00" size=[0, 0.2], "2021-10-21T10:45:31+08:00" squared=True) "2021-10-21T10:45:31+08:00" ], "2021-10-21T10:45:31+08:00" record=True), "2021-10-21T10:45:31+08:00" dict(type='Pad', size_divisor=32), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Normalize', "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], "2021-10-21T10:45:31+08:00" std=[1.0, 1.0, 1.0], "2021-10-21T10:45:31+08:00" to_rgb=False), "2021-10-21T10:45:31+08:00" dict(type='ExtraAttrs', tag='unsup_student'), "2021-10-21T10:45:31+08:00" dict(type='DefaultFormatBundle'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Collect', "2021-10-21T10:45:31+08:00" keys=['img', 'gt_bboxes', 'gt_labels'], "2021-10-21T10:45:31+08:00" meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', "2021-10-21T10:45:31+08:00" 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) "2021-10-21T10:45:31+08:00" ] "2021-10-21T10:45:31+08:00" weak_pipeline = [ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Sequential', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='RandResize', "2021-10-21T10:45:31+08:00" img_scale=[(1333, 400), (1333, 1200)], "2021-10-21T10:45:31+08:00" multiscale_mode='range', "2021-10-21T10:45:31+08:00" keep_ratio=True), "2021-10-21T10:45:31+08:00" dict(type='RandFlip', flip_ratio=0.5) "2021-10-21T10:45:31+08:00" ], "2021-10-21T10:45:31+08:00" record=True), "2021-10-21T10:45:31+08:00" dict(type='Pad', size_divisor=32), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Normalize', "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], "2021-10-21T10:45:31+08:00" std=[1.0, 1.0, 1.0], "2021-10-21T10:45:31+08:00" to_rgb=False), "2021-10-21T10:45:31+08:00" dict(type='ExtraAttrs', tag='unsup_teacher'), "2021-10-21T10:45:31+08:00" dict(type='DefaultFormatBundle'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Collect', "2021-10-21T10:45:31+08:00" keys=['img', 'gt_bboxes', 'gt_labels'], "2021-10-21T10:45:31+08:00" meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', "2021-10-21T10:45:31+08:00" 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) "2021-10-21T10:45:31+08:00" ] "2021-10-21T10:45:31+08:00" unsup_pipeline = [ "2021-10-21T10:45:31+08:00" dict(type='LoadImageFromFile'), "2021-10-21T10:45:31+08:00" dict(type='PseudoSamples', with_bbox=True), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='MultiBranch', "2021-10-21T10:45:31+08:00" unsup_teacher=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Sequential', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='RandResize', "2021-10-21T10:45:31+08:00" img_scale=[(1333, 400), (1333, 1200)], "2021-10-21T10:45:31+08:00" multiscale_mode='range', "2021-10-21T10:45:31+08:00" keep_ratio=True), "2021-10-21T10:45:31+08:00" dict(type='RandFlip', flip_ratio=0.5), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='ShuffledSequential', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='OneOf', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict(type='Identity'), "2021-10-21T10:45:31+08:00" dict(type='AutoContrast'), "2021-10-21T10:45:31+08:00" dict(type='RandEqualize'), "2021-10-21T10:45:31+08:00" dict(type='RandSolarize'), "2021-10-21T10:45:31+08:00" dict(type='RandColor'), "2021-10-21T10:45:31+08:00" dict(type='RandContrast'), "2021-10-21T10:45:31+08:00" dict(type='RandBrightness'), "2021-10-21T10:45:31+08:00" dict(type='RandSharpness'), "2021-10-21T10:45:31+08:00" dict(type='RandPosterize') "2021-10-21T10:45:31+08:00" ]), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='OneOf', "2021-10-21T10:45:31+08:00" transforms=[{ "2021-10-21T10:45:31+08:00" 'type': 'RandTranslate', "2021-10-21T10:45:31+08:00" 'x': (-0.1, 0.1) "2021-10-21T10:45:31+08:00" }, { "2021-10-21T10:45:31+08:00" 'type': 'RandTranslate', "2021-10-21T10:45:31+08:00" 'y': (-0.1, 0.1) "2021-10-21T10:45:31+08:00" }, { "2021-10-21T10:45:31+08:00" 'type': 'RandRotate', "2021-10-21T10:45:31+08:00" 'angle': (-30, 30) "2021-10-21T10:45:31+08:00" }, "2021-10-21T10:45:31+08:00" [{ "2021-10-21T10:45:31+08:00" 'type': 'RandShear', "2021-10-21T10:45:31+08:00" 'x': (-30, 30) "2021-10-21T10:45:31+08:00" }, { "2021-10-21T10:45:31+08:00" 'type': 'RandShear', "2021-10-21T10:45:31+08:00" 'y': (-30, 30) "2021-10-21T10:45:31+08:00" }]]) "2021-10-21T10:45:31+08:00" ]), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='RandErase', "2021-10-21T10:45:31+08:00" n_iterations=(1, 5), "2021-10-21T10:45:31+08:00" size=[0, 0.2], "2021-10-21T10:45:31+08:00" squared=True) "2021-10-21T10:45:31+08:00" ], "2021-10-21T10:45:31+08:00" record=True), "2021-10-21T10:45:31+08:00" dict(type='Pad', size_divisor=32), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Normalize', "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], "2021-10-21T10:45:31+08:00" std=[1.0, 1.0, 1.0], "2021-10-21T10:45:31+08:00" to_rgb=False), "2021-10-21T10:45:31+08:00" dict(type='ExtraAttrs', tag='unsup_student'), "2021-10-21T10:45:31+08:00" dict(type='DefaultFormatBundle'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Collect', "2021-10-21T10:45:31+08:00" keys=['img', 'gt_bboxes', 'gt_labels'], "2021-10-21T10:45:31+08:00" meta_keys=('filename', 'ori_shape', 'img_shape', "2021-10-21T10:45:31+08:00" 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', "2021-10-21T10:45:31+08:00" 'transform_matrix')) "2021-10-21T10:45:31+08:00" ], "2021-10-21T10:45:31+08:00" unsup_student=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Sequential', "2021-10-21T10:45:31+08:00" transforms=[ "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='RandResize', "2021-10-21T10:45:31+08:00" img_scale=[(1333, 400), (1333, 1200)], "2021-10-21T10:45:31+08:00" multiscale_mode='range', "2021-10-21T10:45:31+08:00" keep_ratio=True), "2021-10-21T10:45:31+08:00" dict(type='RandFlip', flip_ratio=0.5) "2021-10-21T10:45:31+08:00" ], "2021-10-21T10:45:31+08:00" record=True), "2021-10-21T10:45:31+08:00" dict(type='Pad', size_divisor=32), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Normalize', "2021-10-21T10:45:31+08:00" mean=[103.53, 116.28, 123.675], "2021-10-21T10:45:31+08:00" std=[1.0, 1.0, 1.0], "2021-10-21T10:45:31+08:00" to_rgb=False), "2021-10-21T10:45:31+08:00" dict(type='ExtraAttrs', tag='unsup_teacher'), "2021-10-21T10:45:31+08:00" dict(type='DefaultFormatBundle'), "2021-10-21T10:45:31+08:00" dict( "2021-10-21T10:45:31+08:00" type='Collect', "2021-10-21T10:45:31+08:00" keys=['img', 'gt_bboxes', 'gt_labels'], "2021-10-21T10:45:31+08:00" meta_keys=('filename', 'ori_shape', 'img_shape', "2021-10-21T10:45:31+08:00" 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', "2021-10-21T10:45:31+08:00" 'transform_matrix')) "2021-10-21T10:45:31+08:00" ]) "2021-10-21T10:45:31+08:00" ] "2021-10-21T10:45:31+08:00" fp16 = dict(loss_scale='dynamic') "2021-10-21T10:45:31+08:00" work_dir = '/data1/train_code/SoftTeacher/workdir/soft_teacher_faster_rcnn_r50_caffe_fpn_adas_full_720k' "2021-10-21T10:45:31+08:00" cfg_name = 'soft_teacher_faster_rcnn_r50_caffe_fpn_adas_full_720k' "2021-10-21T10:45:31+08:00" gpu_ids = range(0, 1) "2021-10-21T10:45:31+08:00" "2021-10-21T10:45:32+08:00" /data1/train_code/SoftTeacher/thirdparty/mmdetection/mmdet/core/anchor/builder.py:17: UserWarning: ``build_anchor_generator`` would be deprecated soon, please use ``build_prior_generator`` "2021-10-21T10:45:32+08:00" '``build_anchor_generator`` would be deprecated soon, please use ' "2021-10-21T10:45:32+08:00" 2021-10-21 10:45:32,497 - mmcv - INFO - load model from: /data1/train_code/model_zoo/resnet50-19c8e357.pth "2021-10-21T10:45:32+08:00" 2021-10-21 10:45:32,497 - mmcv - INFO - Use load_from_local loader "2021-10-21T10:45:32+08:00" 2021-10-21 10:45:32,729 - mmcv - WARNING - The model and loaded state dict do not match exactly "2021-10-21T10:45:32+08:00" "2021-10-21T10:45:32+08:00" unexpected key in source state_dict: fc.weight, fc.bias "2021-10-21T10:45:32+08:00" "2021-10-21T10:45:32+08:00" 2021-10-21 10:45:32,985 - mmcv - INFO - load model from: /data1/train_code/model_zoo/resnet50-19c8e357.pth "2021-10-21T10:45:32+08:00" 2021-10-21 10:45:32,985 - mmcv - INFO - Use load_from_local loader "2021-10-21T10:45:33+08:00" 2021-10-21 10:45:33,285 - mmcv - WARNING - The model and loaded state dict do not match exactly "2021-10-21T10:45:33+08:00" "2021-10-21T10:45:33+08:00" unexpected key in source state_dict: fc.weight, fc.bias "2021-10-21T10:45:33+08:00" "2021-10-21T10:45:33+08:00" /data1/train_code/SoftTeacher/thirdparty/mmdetection/mmdet/datasets/api_wrappers/coco_api.py:22: UserWarning: mmpycocotools is deprecated. Please install official pycocotools by "pip install pycocotools" "2021-10-21T10:45:33+08:00" UserWarning) "2021-10-21T10:45:33+08:00" loading annotations into memory... "2021-10-21T10:45:34+08:00" Done (t=0.57s) "2021-10-21T10:45:34+08:00" creating index... "2021-10-21T10:45:34+08:00" index created! "2021-10-21T10:45:34+08:00" loading annotations into memory... "2021-10-21T10:45:46+08:00" Done (t=11.99s) "2021-10-21T10:45:46+08:00" creating index... "2021-10-21T10:45:47+08:00" index created! "2021-10-21T10:45:49+08:00" fatal: Not a git repository (or any parent up to mount point /data1) "2021-10-21T10:45:49+08:00" Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set). "2021-10-21T10:45:53+08:00" /data1/train_code/SoftTeacher/thirdparty/mmdetection/mmdet/datasets/api_wrappers/coco_api.py:22: UserWarning: mmpycocotools is deprecated. Please install official pycocotools by "pip install pycocotools" "2021-10-21T10:45:53+08:00" UserWarning) "2021-10-21T10:45:53+08:00" loading annotations into memory... "2021-10-21T10:45:53+08:00" Done (t=0.39s) "2021-10-21T10:45:53+08:00" creating index... "2021-10-21T10:45:53+08:00" index created! "2021-10-21T10:45:54+08:00" 2021-10-21 10:45:54,124 - mmdet.ssod - INFO - Start running, host: root@train-coco-full-train-4gpu-1-0, work_dir: /data1/train_code/SoftTeacher/workdir/soft_teacher_faster_rcnn_r50_caffe_fpn_adas_full_720k "2021-10-21T10:45:54+08:00" 2021-10-21 10:45:54,125 - mmdet.ssod - INFO - Hooks will be executed in the following order: "2021-10-21T10:45:54+08:00" before_run: "2021-10-21T10:45:54+08:00" (VERY_HIGH ) StepLrUpdaterHook "2021-10-21T10:45:54+08:00" (ABOVE_NORMAL) Fp16OptimizerHook "2021-10-21T10:45:54+08:00" (NORMAL ) CheckpointHook "2021-10-21T10:45:54+08:00" (NORMAL ) WeightSummary "2021-10-21T10:45:54+08:00" (NORMAL ) MeanTeacher "2021-10-21T10:45:54+08:00" (80 ) SubModulesDistEvalHook "2021-10-21T10:45:54+08:00" (VERY_LOW ) TextLoggerHook "2021-10-21T10:45:54+08:00" (VERY_LOW ) TensorboardLoggerHook "2021-10-21T10:45:54+08:00" -------------------- "2021-10-21T10:45:54+08:00" before_train_epoch: "2021-10-21T10:45:54+08:00" (VERY_HIGH ) StepLrUpdaterHook "2021-10-21T10:45:54+08:00" (NORMAL ) IterTimerHook "2021-10-21T10:45:54+08:00" (NORMAL ) NumClassCheckHook "2021-10-21T10:45:54+08:00" (80 ) SubModulesDistEvalHook "2021-10-21T10:45:54+08:00" (VERY_LOW ) TextLoggerHook "2021-10-21T10:45:54+08:00" (VERY_LOW ) TensorboardLoggerHook "2021-10-21T10:45:54+08:00" -------------------- "2021-10-21T10:45:54+08:00" before_train_iter: "2021-10-21T10:45:54+08:00" (VERY_HIGH ) StepLrUpdaterHook "2021-10-21T10:45:54+08:00" (NORMAL ) IterTimerHook "2021-10-21T10:45:54+08:00" (NORMAL ) MeanTeacher "2021-10-21T10:45:54+08:00" (80 ) SubModulesDistEvalHook "2021-10-21T10:45:54+08:00" -------------------- "2021-10-21T10:45:54+08:00" after_train_iter: "2021-10-21T10:45:54+08:00" (ABOVE_NORMAL) Fp16OptimizerHook "2021-10-21T10:45:54+08:00" (NORMAL ) CheckpointHook "2021-10-21T10:45:54+08:00" (NORMAL ) IterTimerHook "2021-10-21T10:45:54+08:00" (NORMAL ) MeanTeacher "2021-10-21T10:45:54+08:00" (80 ) SubModulesDistEvalHook "2021-10-21T10:45:54+08:00" (VERY_LOW ) TextLoggerHook "2021-10-21T10:45:54+08:00" (VERY_LOW ) TensorboardLoggerHook "2021-10-21T10:45:54+08:00" -------------------- "2021-10-21T10:45:54+08:00" after_train_epoch: "2021-10-21T10:45:54+08:00" (NORMAL ) CheckpointHook "2021-10-21T10:45:54+08:00" (80 ) SubModulesDistEvalHook "2021-10-21T10:45:54+08:00" (VERY_LOW ) TextLoggerHook "2021-10-21T10:45:54+08:00" (VERY_LOW ) TensorboardLoggerHook "2021-10-21T10:45:54+08:00" -------------------- "2021-10-21T10:45:54+08:00" before_val_epoch: "2021-10-21T10:45:54+08:00" (NORMAL ) IterTimerHook "2021-10-21T10:45:54+08:00" (NORMAL ) NumClassCheckHook "2021-10-21T10:45:54+08:00" (VERY_LOW ) TextLoggerHook "2021-10-21T10:45:54+08:00" (VERY_LOW ) TensorboardLoggerHook "2021-10-21T10:45:54+08:00" -------------------- "2021-10-21T10:45:54+08:00" before_val_iter: "2021-10-21T10:45:54+08:00" (NORMAL ) IterTimerHook "2021-10-21T10:45:54+08:00" -------------------- "2021-10-21T10:45:54+08:00" after_val_iter: "2021-10-21T10:45:54+08:00" (NORMAL ) IterTimerHook "2021-10-21T10:45:54+08:00" -------------------- "2021-10-21T10:45:54+08:00" after_val_epoch: "2021-10-21T10:45:54+08:00" (VERY_LOW ) TextLoggerHook "2021-10-21T10:45:54+08:00" (VERY_LOW ) TensorboardLoggerHook "2021-10-21T10:45:54+08:00" -------------------- "2021-10-21T10:45:54+08:00" after_run: "2021-10-21T10:45:54+08:00" (VERY_LOW ) TensorboardLoggerHook "2021-10-21T10:45:54+08:00" -------------------- "2021-10-21T10:45:54+08:00" 2021-10-21 10:45:54,127 - mmdet.ssod - INFO - workflow: [('train', 1)], max: 720000 iters "2021-10-21T10:45:54+08:00" 2021-10-21 10:45:54,270 - mmdet.ssod - INFO - "2021-10-21T10:45:54+08:00" +--------------------------------------------------------------------------------------------------------------------+ "2021-10-21T10:45:54+08:00" | Model Information | "2021-10-21T10:45:54+08:00" +------------------------------------------------+-----------+---------------+-----------------------+------+--------+ "2021-10-21T10:45:54+08:00" | Name | Optimized | Shape | Value Scale [Min,Max] | Lr | Wd | "2021-10-21T10:45:54+08:00" +------------------------------------------------+-----------+---------------+-----------------------+------+--------+ "2021-10-21T10:45:54+08:00" | teacher.backbone.conv1.weight | N | 64X3X7X7 | Min:-0.782 Max:0.781 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.bn1.weight | N | 64 | Min:0.000 Max:0.508 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.bn1.bias | N | 64 | Min:-0.503 Max:0.848 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.conv1.weight | N | 64X64X1X1 | Min:-0.727 Max:0.389 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.bn1.weight | N | 64 | Min:0.000 Max:0.375 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.bn1.bias | N | 64 | Min:-0.279 Max:0.529 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.conv2.weight | N | 64X64X3X3 | Min:-0.468 Max:0.443 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.bn2.weight | N | 64 | Min:0.000 Max:0.272 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.bn2.bias | N | 64 | Min:-0.228 Max:0.525 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.conv3.weight | N | 256X64X1X1 | Min:-0.364 Max:0.394 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.bn3.weight | N | 256 | Min:-0.113 Max:0.389 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.bn3.bias | N | 256 | Min:-0.307 Max:0.217 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.downsample.0.weight | N | 256X64X1X1 | Min:-0.745 Max:0.988 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.downsample.1.weight | N | 256 | Min:-0.042 Max:0.456 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.0.downsample.1.bias | N | 256 | Min:-0.307 Max:0.217 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.1.conv1.weight | N | 64X256X1X1 | Min:-0.202 Max:0.262 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.1.bn1.weight | N | 64 | Min:0.000 Max:0.341 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.1.bn1.bias | N | 64 | Min:-0.405 Max:0.392 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.1.conv2.weight | N | 64X64X3X3 | Min:-0.404 Max:0.520 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.1.bn2.weight | N | 64 | Min:0.119 Max:0.300 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.1.bn2.bias | N | 64 | Min:-0.335 Max:0.313 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.1.conv3.weight | N | 256X64X1X1 | Min:-0.295 Max:0.285 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.1.bn3.weight | N | 256 | Min:-0.114 Max:0.275 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.1.bn3.bias | N | 256 | Min:-0.148 Max:0.156 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.2.conv1.weight | N | 64X256X1X1 | Min:-0.192 Max:0.158 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.2.bn1.weight | N | 64 | Min:0.100 Max:0.245 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.2.bn1.bias | N | 64 | Min:-0.192 Max:0.179 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.2.conv2.weight | N | 64X64X3X3 | Min:-0.225 Max:0.286 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.2.bn2.weight | N | 64 | Min:0.116 Max:0.315 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.2.bn2.bias | N | 64 | Min:-0.341 Max:0.260 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.2.conv3.weight | N | 256X64X1X1 | Min:-0.217 Max:0.275 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.2.bn3.weight | N | 256 | Min:-0.098 Max:0.375 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer1.2.bn3.bias | N | 256 | Min:-0.168 Max:0.197 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.conv1.weight | N | 128X256X1X1 | Min:-0.290 Max:0.353 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.bn1.weight | N | 128 | Min:0.108 Max:0.351 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.bn1.bias | N | 128 | Min:-0.303 Max:0.116 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.conv2.weight | N | 128X128X3X3 | Min:-0.299 Max:0.162 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.bn2.weight | N | 128 | Min:0.145 Max:0.291 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.bn2.bias | N | 128 | Min:-0.316 Max:0.259 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.conv3.weight | N | 512X128X1X1 | Min:-0.340 Max:0.392 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.bn3.weight | N | 512 | Min:-0.036 Max:0.328 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.bn3.bias | N | 512 | Min:-0.171 Max:0.198 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.downsample.0.weight | N | 512X256X1X1 | Min:-0.329 Max:0.566 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.downsample.1.weight | N | 512 | Min:-0.019 Max:0.373 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.0.downsample.1.bias | N | 512 | Min:-0.171 Max:0.198 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.1.conv1.weight | N | 128X512X1X1 | Min:-0.166 Max:0.252 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.1.bn1.weight | N | 128 | Min:0.051 Max:0.219 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.1.bn1.bias | N | 128 | Min:-0.187 Max:0.385 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.1.conv2.weight | N | 128X128X3X3 | Min:-0.242 Max:0.300 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.1.bn2.weight | N | 128 | Min:0.080 Max:0.287 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.1.bn2.bias | N | 128 | Min:-0.182 Max:0.198 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.1.conv3.weight | N | 512X128X1X1 | Min:-0.292 Max:0.304 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.1.bn3.weight | N | 512 | Min:-0.071 Max:0.391 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.1.bn3.bias | N | 512 | Min:-0.238 Max:0.156 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.2.conv1.weight | N | 128X512X1X1 | Min:-0.238 Max:0.189 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.2.bn1.weight | N | 128 | Min:0.107 Max:0.240 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.2.bn1.bias | N | 128 | Min:-0.202 Max:0.268 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.2.conv2.weight | N | 128X128X3X3 | Min:-0.206 Max:0.256 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.2.bn2.weight | N | 128 | Min:0.108 Max:0.254 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.2.bn2.bias | N | 128 | Min:-0.173 Max:0.281 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.2.conv3.weight | N | 512X128X1X1 | Min:-0.284 Max:0.352 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.2.bn3.weight | N | 512 | Min:-0.065 Max:0.329 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.2.bn3.bias | N | 512 | Min:-0.269 Max:0.166 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.3.conv1.weight | N | 128X512X1X1 | Min:-0.180 Max:0.281 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.3.bn1.weight | N | 128 | Min:0.119 Max:0.239 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.3.bn1.bias | N | 128 | Min:-0.235 Max:0.111 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.3.conv2.weight | N | 128X128X3X3 | Min:-0.179 Max:0.221 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.3.bn2.weight | N | 128 | Min:0.121 Max:0.259 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.3.bn2.bias | N | 128 | Min:-0.218 Max:0.278 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.3.conv3.weight | N | 512X128X1X1 | Min:-0.258 Max:0.296 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.3.bn3.weight | N | 512 | Min:-0.051 Max:0.316 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer2.3.bn3.bias | N | 512 | Min:-0.213 Max:0.123 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.conv1.weight | N | 256X512X1X1 | Min:-0.334 Max:0.343 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.bn1.weight | N | 256 | Min:0.145 Max:0.316 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.bn1.bias | N | 256 | Min:-0.379 Max:0.113 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.conv2.weight | N | 256X256X3X3 | Min:-0.201 Max:0.195 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.bn2.weight | N | 256 | Min:0.127 Max:0.322 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.bn2.bias | N | 256 | Min:-0.177 Max:0.268 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.conv3.weight | N | 1024X256X1X1 | Min:-0.287 Max:0.321 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.bn3.weight | N | 1024 | Min:-0.002 Max:0.346 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.bn3.bias | N | 1024 | Min:-0.123 Max:0.163 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.downsample.0.weight | N | 1024X512X1X1 | Min:-0.286 Max:0.346 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.downsample.1.weight | N | 1024 | Min:-0.080 Max:0.298 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.0.downsample.1.bias | N | 1024 | Min:-0.123 Max:0.163 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.1.conv1.weight | N | 256X1024X1X1 | Min:-0.182 Max:0.294 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.1.bn1.weight | N | 256 | Min:0.095 Max:0.303 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.1.bn1.bias | N | 256 | Min:-0.154 Max:0.175 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.1.conv2.weight | N | 256X256X3X3 | Min:-0.177 Max:0.263 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.1.bn2.weight | N | 256 | Min:0.102 Max:0.419 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.1.bn2.bias | N | 256 | Min:-0.384 Max:0.197 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.1.conv3.weight | N | 1024X256X1X1 | Min:-0.497 Max:0.444 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.1.bn3.weight | N | 1024 | Min:-0.015 Max:0.411 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.1.bn3.bias | N | 1024 | Min:-0.215 Max:0.149 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.2.conv1.weight | N | 256X1024X1X1 | Min:-0.202 Max:0.271 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.2.bn1.weight | N | 256 | Min:0.098 Max:0.237 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.2.bn1.bias | N | 256 | Min:-0.232 Max:0.119 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.2.conv2.weight | N | 256X256X3X3 | Min:-0.195 Max:0.210 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.2.bn2.weight | N | 256 | Min:0.097 Max:0.318 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.2.bn2.bias | N | 256 | Min:-0.220 Max:0.219 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.2.conv3.weight | N | 1024X256X1X1 | Min:-0.354 Max:0.305 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.2.bn3.weight | N | 1024 | Min:-0.034 Max:0.246 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.2.bn3.bias | N | 1024 | Min:-0.263 Max:0.174 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.3.conv1.weight | N | 256X1024X1X1 | Min:-0.212 Max:0.239 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.3.bn1.weight | N | 256 | Min:0.095 Max:0.245 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.3.bn1.bias | N | 256 | Min:-0.260 Max:0.111 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.3.conv2.weight | N | 256X256X3X3 | Min:-0.158 Max:0.279 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.3.bn2.weight | N | 256 | Min:0.097 Max:0.259 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.3.bn2.bias | N | 256 | Min:-0.208 Max:0.172 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.3.conv3.weight | N | 1024X256X1X1 | Min:-0.244 Max:0.313 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.3.bn3.weight | N | 1024 | Min:-0.030 Max:0.294 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.3.bn3.bias | N | 1024 | Min:-0.225 Max:0.138 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.4.conv1.weight | N | 256X1024X1X1 | Min:-0.194 Max:0.272 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.4.bn1.weight | N | 256 | Min:0.095 Max:0.269 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.4.bn1.bias | N | 256 | Min:-0.324 Max:0.125 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.4.conv2.weight | N | 256X256X3X3 | Min:-0.181 Max:0.192 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.4.bn2.weight | N | 256 | Min:0.099 Max:0.259 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.4.bn2.bias | N | 256 | Min:-0.330 Max:0.209 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.4.conv3.weight | N | 1024X256X1X1 | Min:-0.237 Max:0.316 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.4.bn3.weight | N | 1024 | Min:-0.049 Max:0.235 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.4.bn3.bias | N | 1024 | Min:-0.316 Max:0.128 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.5.conv1.weight | N | 256X1024X1X1 | Min:-0.220 Max:0.399 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.5.bn1.weight | N | 256 | Min:0.090 Max:0.294 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.5.bn1.bias | N | 256 | Min:-0.314 Max:0.136 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.5.conv2.weight | N | 256X256X3X3 | Min:-0.224 Max:0.214 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.5.bn2.weight | N | 256 | Min:0.124 Max:0.525 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.5.bn2.bias | N | 256 | Min:-0.399 Max:0.166 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.5.conv3.weight | N | 1024X256X1X1 | Min:-0.329 Max:0.267 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.5.bn3.weight | N | 1024 | Min:-0.066 Max:0.301 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer3.5.bn3.bias | N | 1024 | Min:-0.371 Max:0.147 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.conv1.weight | N | 512X1024X1X1 | Min:-0.341 Max:0.342 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.bn1.weight | N | 512 | Min:0.107 Max:0.294 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.bn1.bias | N | 512 | Min:-0.350 Max:0.127 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.conv2.weight | N | 512X512X3X3 | Min:-0.309 Max:0.399 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.bn2.weight | N | 512 | Min:0.149 Max:0.296 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.bn2.bias | N | 512 | Min:-0.188 Max:0.164 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.conv3.weight | N | 2048X512X1X1 | Min:-0.262 Max:0.355 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.bn3.weight | N | 2048 | Min:0.034 Max:0.640 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.bn3.bias | N | 2048 | Min:-0.141 Max:0.206 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.downsample.0.weight | N | 2048X1024X1X1 | Min:-0.346 Max:0.641 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.downsample.1.weight | N | 2048 | Min:0.112 Max:0.898 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.0.downsample.1.bias | N | 2048 | Min:-0.141 Max:0.206 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.1.conv1.weight | N | 512X2048X1X1 | Min:-0.429 Max:0.700 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.1.bn1.weight | N | 512 | Min:0.094 Max:0.291 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.1.bn1.bias | N | 512 | Min:-0.320 Max:0.117 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.1.conv2.weight | N | 512X512X3X3 | Min:-0.226 Max:0.169 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.1.bn2.weight | N | 512 | Min:0.147 Max:0.305 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.1.bn2.bias | N | 512 | Min:-0.348 Max:0.081 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.1.conv3.weight | N | 2048X512X1X1 | Min:-0.205 Max:0.243 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.1.bn3.weight | N | 2048 | Min:0.130 Max:0.764 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.1.bn3.bias | N | 2048 | Min:-0.216 Max:0.221 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.2.conv1.weight | N | 512X2048X1X1 | Min:-0.454 Max:0.325 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.2.bn1.weight | N | 512 | Min:0.113 Max:0.487 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.2.bn1.bias | N | 512 | Min:-0.335 Max:0.081 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.2.conv2.weight | N | 512X512X3X3 | Min:-0.142 Max:0.088 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.2.bn2.weight | N | 512 | Min:0.134 Max:0.329 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.2.bn2.bias | N | 512 | Min:-0.294 Max:0.201 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.2.conv3.weight | N | 2048X512X1X1 | Min:-0.151 Max:0.280 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.2.bn3.weight | N | 2048 | Min:0.112 Max:1.320 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.backbone.layer4.2.bn3.bias | N | 2048 | Min:-0.150 Max:0.188 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.lateral_convs.0.conv.weight | N | 256X256X1X1 | Min:-0.108 Max:0.108 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.lateral_convs.0.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.lateral_convs.1.conv.weight | N | 256X512X1X1 | Min:-0.088 Max:0.088 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.lateral_convs.1.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.lateral_convs.2.conv.weight | N | 256X1024X1X1 | Min:-0.068 Max:0.068 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.lateral_convs.2.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.lateral_convs.3.conv.weight | N | 256X2048X1X1 | Min:-0.051 Max:0.051 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.lateral_convs.3.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.fpn_convs.0.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.fpn_convs.0.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.fpn_convs.1.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.fpn_convs.1.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.fpn_convs.2.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.fpn_convs.2.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.fpn_convs.3.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.neck.fpn_convs.3.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.rpn_head.rpn_conv.weight | N | 256X256X3X3 | Min:-0.047 Max:0.046 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.rpn_head.rpn_conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.rpn_head.rpn_cls.weight | N | 3X256X1X1 | Min:-0.033 Max:0.036 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.rpn_head.rpn_cls.bias | N | 3 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.rpn_head.rpn_reg.weight | N | 12X256X1X1 | Min:-0.040 Max:0.034 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.rpn_head.rpn_reg.bias | N | 12 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.roi_head.bbox_head.fc_cls.weight | N | 81X1024 | Min:-0.186 Max:0.190 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.roi_head.bbox_head.fc_cls.bias | N | 81 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.roi_head.bbox_head.fc_reg.weight | N | 320X1024 | Min:-0.186 Max:0.198 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.roi_head.bbox_head.fc_reg.bias | N | 320 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.roi_head.bbox_head.shared_fcs.0.weight | N | 1024X12544 | Min:-0.065 Max:0.065 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.roi_head.bbox_head.shared_fcs.0.bias | N | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.roi_head.bbox_head.shared_fcs.1.weight | N | 1024X1024 | Min:-0.147 Max:0.159 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | teacher.roi_head.bbox_head.shared_fcs.1.bias | N | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.conv1.weight | N | 64X3X7X7 | Min:-0.782 Max:0.781 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.bn1.weight | N | 64 | Min:0.000 Max:0.508 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.bn1.bias | N | 64 | Min:-0.503 Max:0.848 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.conv1.weight | N | 64X64X1X1 | Min:-0.727 Max:0.389 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.bn1.weight | N | 64 | Min:0.000 Max:0.375 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.bn1.bias | N | 64 | Min:-0.279 Max:0.529 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.conv2.weight | N | 64X64X3X3 | Min:-0.468 Max:0.443 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.bn2.weight | N | 64 | Min:0.000 Max:0.272 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.bn2.bias | N | 64 | Min:-0.228 Max:0.525 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.conv3.weight | N | 256X64X1X1 | Min:-0.364 Max:0.394 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.bn3.weight | N | 256 | Min:-0.113 Max:0.389 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.bn3.bias | N | 256 | Min:-0.307 Max:0.217 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.downsample.0.weight | N | 256X64X1X1 | Min:-0.745 Max:0.988 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.downsample.1.weight | N | 256 | Min:-0.042 Max:0.456 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.0.downsample.1.bias | N | 256 | Min:-0.307 Max:0.217 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.1.conv1.weight | N | 64X256X1X1 | Min:-0.202 Max:0.262 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.1.bn1.weight | N | 64 | Min:0.000 Max:0.341 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.1.bn1.bias | N | 64 | Min:-0.405 Max:0.392 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.1.conv2.weight | N | 64X64X3X3 | Min:-0.404 Max:0.520 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.1.bn2.weight | N | 64 | Min:0.119 Max:0.300 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.1.bn2.bias | N | 64 | Min:-0.335 Max:0.313 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.1.conv3.weight | N | 256X64X1X1 | Min:-0.295 Max:0.285 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.1.bn3.weight | N | 256 | Min:-0.114 Max:0.275 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.1.bn3.bias | N | 256 | Min:-0.148 Max:0.156 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.2.conv1.weight | N | 64X256X1X1 | Min:-0.192 Max:0.158 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.2.bn1.weight | N | 64 | Min:0.100 Max:0.245 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.2.bn1.bias | N | 64 | Min:-0.192 Max:0.179 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.2.conv2.weight | N | 64X64X3X3 | Min:-0.225 Max:0.286 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.2.bn2.weight | N | 64 | Min:0.116 Max:0.315 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.2.bn2.bias | N | 64 | Min:-0.341 Max:0.260 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.2.conv3.weight | N | 256X64X1X1 | Min:-0.217 Max:0.275 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.2.bn3.weight | N | 256 | Min:-0.098 Max:0.375 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer1.2.bn3.bias | N | 256 | Min:-0.168 Max:0.197 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.conv1.weight | Y | 128X256X1X1 | Min:-0.290 Max:0.353 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.bn1.weight | N | 128 | Min:0.108 Max:0.351 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.bn1.bias | N | 128 | Min:-0.303 Max:0.116 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.conv2.weight | Y | 128X128X3X3 | Min:-0.299 Max:0.162 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.bn2.weight | N | 128 | Min:0.145 Max:0.291 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.bn2.bias | N | 128 | Min:-0.316 Max:0.259 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.conv3.weight | Y | 512X128X1X1 | Min:-0.340 Max:0.392 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.bn3.weight | N | 512 | Min:-0.036 Max:0.328 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.bn3.bias | N | 512 | Min:-0.171 Max:0.198 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.downsample.0.weight | Y | 512X256X1X1 | Min:-0.329 Max:0.566 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.downsample.1.weight | N | 512 | Min:-0.019 Max:0.373 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.0.downsample.1.bias | N | 512 | Min:-0.171 Max:0.198 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.1.conv1.weight | Y | 128X512X1X1 | Min:-0.166 Max:0.252 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.1.bn1.weight | N | 128 | Min:0.051 Max:0.219 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.1.bn1.bias | N | 128 | Min:-0.187 Max:0.385 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.1.conv2.weight | Y | 128X128X3X3 | Min:-0.242 Max:0.300 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.1.bn2.weight | N | 128 | Min:0.080 Max:0.287 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.1.bn2.bias | N | 128 | Min:-0.182 Max:0.198 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.1.conv3.weight | Y | 512X128X1X1 | Min:-0.292 Max:0.304 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.1.bn3.weight | N | 512 | Min:-0.071 Max:0.391 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.1.bn3.bias | N | 512 | Min:-0.238 Max:0.156 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.2.conv1.weight | Y | 128X512X1X1 | Min:-0.238 Max:0.189 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.2.bn1.weight | N | 128 | Min:0.107 Max:0.240 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.2.bn1.bias | N | 128 | Min:-0.202 Max:0.268 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.2.conv2.weight | Y | 128X128X3X3 | Min:-0.206 Max:0.256 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.2.bn2.weight | N | 128 | Min:0.108 Max:0.254 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.2.bn2.bias | N | 128 | Min:-0.173 Max:0.281 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.2.conv3.weight | Y | 512X128X1X1 | Min:-0.284 Max:0.352 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.2.bn3.weight | N | 512 | Min:-0.065 Max:0.329 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.2.bn3.bias | N | 512 | Min:-0.269 Max:0.166 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.3.conv1.weight | Y | 128X512X1X1 | Min:-0.180 Max:0.281 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.3.bn1.weight | N | 128 | Min:0.119 Max:0.239 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.3.bn1.bias | N | 128 | Min:-0.235 Max:0.111 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.3.conv2.weight | Y | 128X128X3X3 | Min:-0.179 Max:0.221 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.3.bn2.weight | N | 128 | Min:0.121 Max:0.259 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.3.bn2.bias | N | 128 | Min:-0.218 Max:0.278 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.3.conv3.weight | Y | 512X128X1X1 | Min:-0.258 Max:0.296 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.3.bn3.weight | N | 512 | Min:-0.051 Max:0.316 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer2.3.bn3.bias | N | 512 | Min:-0.213 Max:0.123 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.conv1.weight | Y | 256X512X1X1 | Min:-0.334 Max:0.343 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.bn1.weight | N | 256 | Min:0.145 Max:0.316 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.bn1.bias | N | 256 | Min:-0.379 Max:0.113 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.conv2.weight | Y | 256X256X3X3 | Min:-0.201 Max:0.195 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.bn2.weight | N | 256 | Min:0.127 Max:0.322 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.bn2.bias | N | 256 | Min:-0.177 Max:0.268 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.conv3.weight | Y | 1024X256X1X1 | Min:-0.287 Max:0.321 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.bn3.weight | N | 1024 | Min:-0.002 Max:0.346 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.bn3.bias | N | 1024 | Min:-0.123 Max:0.163 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.downsample.0.weight | Y | 1024X512X1X1 | Min:-0.286 Max:0.346 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.downsample.1.weight | N | 1024 | Min:-0.080 Max:0.298 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.0.downsample.1.bias | N | 1024 | Min:-0.123 Max:0.163 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.1.conv1.weight | Y | 256X1024X1X1 | Min:-0.182 Max:0.294 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.1.bn1.weight | N | 256 | Min:0.095 Max:0.303 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.1.bn1.bias | N | 256 | Min:-0.154 Max:0.175 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.1.conv2.weight | Y | 256X256X3X3 | Min:-0.177 Max:0.263 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.1.bn2.weight | N | 256 | Min:0.102 Max:0.419 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.1.bn2.bias | N | 256 | Min:-0.384 Max:0.197 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.1.conv3.weight | Y | 1024X256X1X1 | Min:-0.497 Max:0.444 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.1.bn3.weight | N | 1024 | Min:-0.015 Max:0.411 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.1.bn3.bias | N | 1024 | Min:-0.215 Max:0.149 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.2.conv1.weight | Y | 256X1024X1X1 | Min:-0.202 Max:0.271 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.2.bn1.weight | N | 256 | Min:0.098 Max:0.237 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.2.bn1.bias | N | 256 | Min:-0.232 Max:0.119 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.2.conv2.weight | Y | 256X256X3X3 | Min:-0.195 Max:0.210 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.2.bn2.weight | N | 256 | Min:0.097 Max:0.318 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.2.bn2.bias | N | 256 | Min:-0.220 Max:0.219 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.2.conv3.weight | Y | 1024X256X1X1 | Min:-0.354 Max:0.305 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.2.bn3.weight | N | 1024 | Min:-0.034 Max:0.246 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.2.bn3.bias | N | 1024 | Min:-0.263 Max:0.174 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.3.conv1.weight | Y | 256X1024X1X1 | Min:-0.212 Max:0.239 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.3.bn1.weight | N | 256 | Min:0.095 Max:0.245 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.3.bn1.bias | N | 256 | Min:-0.260 Max:0.111 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.3.conv2.weight | Y | 256X256X3X3 | Min:-0.158 Max:0.279 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.3.bn2.weight | N | 256 | Min:0.097 Max:0.259 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.3.bn2.bias | N | 256 | Min:-0.208 Max:0.172 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.3.conv3.weight | Y | 1024X256X1X1 | Min:-0.244 Max:0.313 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.3.bn3.weight | N | 1024 | Min:-0.030 Max:0.294 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.3.bn3.bias | N | 1024 | Min:-0.225 Max:0.138 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.4.conv1.weight | Y | 256X1024X1X1 | Min:-0.194 Max:0.272 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.4.bn1.weight | N | 256 | Min:0.095 Max:0.269 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.4.bn1.bias | N | 256 | Min:-0.324 Max:0.125 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.4.conv2.weight | Y | 256X256X3X3 | Min:-0.181 Max:0.192 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.4.bn2.weight | N | 256 | Min:0.099 Max:0.259 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.4.bn2.bias | N | 256 | Min:-0.330 Max:0.209 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.4.conv3.weight | Y | 1024X256X1X1 | Min:-0.237 Max:0.316 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.4.bn3.weight | N | 1024 | Min:-0.049 Max:0.235 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.4.bn3.bias | N | 1024 | Min:-0.316 Max:0.128 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.5.conv1.weight | Y | 256X1024X1X1 | Min:-0.220 Max:0.399 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.5.bn1.weight | N | 256 | Min:0.090 Max:0.294 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.5.bn1.bias | N | 256 | Min:-0.314 Max:0.136 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.5.conv2.weight | Y | 256X256X3X3 | Min:-0.224 Max:0.214 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.5.bn2.weight | N | 256 | Min:0.124 Max:0.525 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.5.bn2.bias | N | 256 | Min:-0.399 Max:0.166 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.5.conv3.weight | Y | 1024X256X1X1 | Min:-0.329 Max:0.267 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.5.bn3.weight | N | 1024 | Min:-0.066 Max:0.301 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer3.5.bn3.bias | N | 1024 | Min:-0.371 Max:0.147 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.conv1.weight | Y | 512X1024X1X1 | Min:-0.341 Max:0.342 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.bn1.weight | N | 512 | Min:0.107 Max:0.294 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.bn1.bias | N | 512 | Min:-0.350 Max:0.127 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.conv2.weight | Y | 512X512X3X3 | Min:-0.309 Max:0.399 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.bn2.weight | N | 512 | Min:0.149 Max:0.296 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.bn2.bias | N | 512 | Min:-0.188 Max:0.164 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.conv3.weight | Y | 2048X512X1X1 | Min:-0.262 Max:0.355 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.bn3.weight | N | 2048 | Min:0.034 Max:0.640 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.bn3.bias | N | 2048 | Min:-0.141 Max:0.206 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.downsample.0.weight | Y | 2048X1024X1X1 | Min:-0.346 Max:0.641 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.downsample.1.weight | N | 2048 | Min:0.112 Max:0.898 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.0.downsample.1.bias | N | 2048 | Min:-0.141 Max:0.206 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.1.conv1.weight | Y | 512X2048X1X1 | Min:-0.429 Max:0.700 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.1.bn1.weight | N | 512 | Min:0.094 Max:0.291 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.1.bn1.bias | N | 512 | Min:-0.320 Max:0.117 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.1.conv2.weight | Y | 512X512X3X3 | Min:-0.226 Max:0.169 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.1.bn2.weight | N | 512 | Min:0.147 Max:0.305 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.1.bn2.bias | N | 512 | Min:-0.348 Max:0.081 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.1.conv3.weight | Y | 2048X512X1X1 | Min:-0.205 Max:0.243 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.1.bn3.weight | N | 2048 | Min:0.130 Max:0.764 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.1.bn3.bias | N | 2048 | Min:-0.216 Max:0.221 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.2.conv1.weight | Y | 512X2048X1X1 | Min:-0.454 Max:0.325 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.2.bn1.weight | N | 512 | Min:0.113 Max:0.487 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.2.bn1.bias | N | 512 | Min:-0.335 Max:0.081 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.2.conv2.weight | Y | 512X512X3X3 | Min:-0.142 Max:0.088 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.2.bn2.weight | N | 512 | Min:0.134 Max:0.329 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.2.bn2.bias | N | 512 | Min:-0.294 Max:0.201 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.2.conv3.weight | Y | 2048X512X1X1 | Min:-0.151 Max:0.280 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.2.bn3.weight | N | 2048 | Min:0.112 Max:1.320 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.backbone.layer4.2.bn3.bias | N | 2048 | Min:-0.150 Max:0.188 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.lateral_convs.0.conv.weight | Y | 256X256X1X1 | Min:-0.108 Max:0.108 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.lateral_convs.0.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.lateral_convs.1.conv.weight | Y | 256X512X1X1 | Min:-0.088 Max:0.088 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.lateral_convs.1.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.lateral_convs.2.conv.weight | Y | 256X1024X1X1 | Min:-0.068 Max:0.068 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.lateral_convs.2.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.lateral_convs.3.conv.weight | Y | 256X2048X1X1 | Min:-0.051 Max:0.051 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.lateral_convs.3.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.fpn_convs.0.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.fpn_convs.0.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.fpn_convs.1.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.fpn_convs.1.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.fpn_convs.2.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.fpn_convs.2.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.fpn_convs.3.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.neck.fpn_convs.3.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.rpn_head.rpn_conv.weight | Y | 256X256X3X3 | Min:-0.052 Max:0.043 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.rpn_head.rpn_conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.rpn_head.rpn_cls.weight | Y | 3X256X1X1 | Min:-0.029 Max:0.034 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.rpn_head.rpn_cls.bias | Y | 3 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.rpn_head.rpn_reg.weight | Y | 12X256X1X1 | Min:-0.033 Max:0.034 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.rpn_head.rpn_reg.bias | Y | 12 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.roi_head.bbox_head.fc_cls.weight | Y | 81X1024 | Min:-0.197 Max:0.201 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.roi_head.bbox_head.fc_cls.bias | Y | 81 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.roi_head.bbox_head.fc_reg.weight | Y | 320X1024 | Min:-0.203 Max:0.174 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.roi_head.bbox_head.fc_reg.bias | Y | 320 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.roi_head.bbox_head.shared_fcs.0.weight | Y | 1024X12544 | Min:-0.065 Max:0.064 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.roi_head.bbox_head.shared_fcs.0.bias | Y | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.roi_head.bbox_head.shared_fcs.1.weight | Y | 1024X1024 | Min:-0.144 Max:0.143 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" | student.roi_head.bbox_head.shared_fcs.1.bias | Y | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 | "2021-10-21T10:45:54+08:00" +------------------------------------------------+-----------+---------------+-----------------------+------+--------+ "2021-10-21T10:47:09+08:00" /data1/train_code/SoftTeacher/thirdparty/mmdetection/mmdet/core/anchor/anchor_generator.py:324: UserWarning: ``grid_anchors`` would be deprecated soon. Please use ``grid_priors`` "2021-10-21T10:47:09+08:00" warnings.warn('``grid_anchors`` would be deprecated soon. ' "2021-10-21T10:47:09+08:00" /data1/train_code/SoftTeacher/thirdparty/mmdetection/mmdet/core/anchor/anchor_generator.py:361: UserWarning: ``single_level_grid_anchors`` would be deprecated soon. Please use ``single_level_grid_priors`` "2021-10-21T10:47:09+08:00" '``single_level_grid_anchors`` would be deprecated soon. ' "2021-10-21T10:47:11+08:00" 2021-10-21 10:47:11,950 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 2147483648.0 "2021-10-21T10:47:13+08:00" 2021-10-21 10:47:13,019 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1073741824.0 "2021-10-21T10:47:14+08:00" 2021-10-21 10:47:14,148 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 536870912.0 "2021-10-21T10:47:15+08:00" 2021-10-21 10:47:15,176 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 268435456.0 "2021-10-21T10:47:16+08:00" 2021-10-21 10:47:16,204 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 134217728.0 "2021-10-21T10:47:17+08:00" 2021-10-21 10:47:17,082 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 67108864.0 "2021-10-21T10:47:18+08:00" 2021-10-21 10:47:18,003 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 33554432.0 "2021-10-21T10:47:18+08:00" 2021-10-21 10:47:18,999 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 16777216.0 "2021-10-21T10:47:20+08:00" 2021-10-21 10:47:20,136 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 8388608.0 "2021-10-21T10:47:21+08:00" 2021-10-21 10:47:21,097 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 4194304.0 "2021-10-21T10:47:22+08:00" 2021-10-21 10:47:22,144 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 2097152.0 "2021-10-21T10:47:23+08:00" 2021-10-21 10:47:23,215 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1048576.0 "2021-10-21T10:47:24+08:00" 2021-10-21 10:47:24,115 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 524288.0 "2021-10-21T10:47:24+08:00" 2021-10-21 10:47:24,961 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 262144.0 "2021-10-21T10:47:26+08:00" 2021-10-21 10:47:26,028 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 131072.0 "2021-10-21T10:47:26+08:00" 2021-10-21 10:47:26,989 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 65536.0 "2021-10-21T10:47:27+08:00" 2021-10-21 10:47:27,972 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 32768.0 "2021-10-21T10:47:29+08:00" 2021-10-21 10:47:29,024 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 16384.0 "2021-10-21T10:47:29+08:00" 2021-10-21 10:47:29,941 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 8192.0 "2021-10-21T10:47:30+08:00" 2021-10-21 10:47:30,900 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 4096.0 "2021-10-21T10:47:32+08:00" 2021-10-21 10:47:32,108 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 2048.0 "2021-10-21T10:47:33+08:00" 2021-10-21 10:47:33,114 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1024.0 "2021-10-21T10:47:33+08:00" 2021-10-21 10:47:33,983 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 512.0 "2021-10-21T10:47:35+08:00" 2021-10-21 10:47:35,078 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 256.0 "2021-10-21T10:47:36+08:00" 2021-10-21 10:47:36,120 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 128.0 "2021-10-21T10:47:38+08:00" 2021-10-21 10:47:38,257 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 64.0 "2021-10-21T10:47:39+08:00" 2021-10-21 10:47:39,329 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 32.0 "2021-10-21T10:47:40+08:00" 2021-10-21 10:47:40,375 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 16.0 "2021-10-21T10:47:41+08:00" 2021-10-21 10:47:41,250 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 8.0 "2021-10-21T10:47:42+08:00" 2021-10-21 10:47:42,157 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 4.0 "2021-10-21T10:47:43+08:00" 2021-10-21 10:47:43,020 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 2.0 "2021-10-21T10:47:43+08:00" 2021-10-21 10:47:43,949 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1.0 "2021-10-21T10:47:44+08:00" 2021-10-21 10:47:44,841 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:45+08:00" 2021-10-21 10:47:45,667 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:46+08:00" 2021-10-21 10:47:46,564 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:47+08:00" 2021-10-21 10:47:47,531 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:48+08:00" 2021-10-21 10:47:48,349 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:49+08:00" 2021-10-21 10:47:49,092 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:49+08:00" 2021-10-21 10:47:49,717 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:50+08:00" 2021-10-21 10:47:50,526 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:51+08:00" 2021-10-21 10:47:51,409 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:52+08:00" 2021-10-21 10:47:52,132 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:53+08:00" 2021-10-21 10:47:53,001 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:53+08:00" 2021-10-21 10:47:53,862 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:54+08:00" 2021-10-21 10:47:54,695 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:55+08:00" 2021-10-21 10:47:55,463 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:56+08:00" 2021-10-21 10:47:56,211 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:56+08:00" 2021-10-21 10:47:56,869 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:57+08:00" 2021-10-21 10:47:57,569 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:57+08:00" 2021-10-21 10:47:57,570 - mmdet.ssod - INFO - Iter [50/720000] lr: 9.890e-04, eta: 8 days, 2:38:24, time: 0.973, data_time: 0.042, memory: 9702, ema_momentum: 0.9800, sup_loss_rpn_cls: nan, sup_loss_rpn_bbox: nan, sup_loss_cls: nan, sup_acc: 31.7076, sup_loss_bbox: nan, unsup_loss_rpn_cls: nan, unsup_loss_rpn_bbox: nan, unsup_loss_cls: nan, unsup_acc: 36.2986, unsup_loss_bbox: nan, loss: nan "2021-10-21T10:47:58+08:00" 2021-10-21 10:47:58,223 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:58+08:00" 2021-10-21 10:47:58,992 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:47:59+08:00" 2021-10-21 10:47:59,758 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:00+08:00" 2021-10-21 10:48:00,536 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:01+08:00" 2021-10-21 10:48:01,357 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:02+08:00" 2021-10-21 10:48:02,134 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:02+08:00" 2021-10-21 10:48:02,928 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:03+08:00" 2021-10-21 10:48:03,734 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:04+08:00" 2021-10-21 10:48:04,652 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:05+08:00" 2021-10-21 10:48:05,415 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:06+08:00" 2021-10-21 10:48:06,254 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:07+08:00" 2021-10-21 10:48:07,028 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:07+08:00" 2021-10-21 10:48:07,716 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:08+08:00" 2021-10-21 10:48:08,671 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:09+08:00" 2021-10-21 10:48:09,465 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:10+08:00" 2021-10-21 10:48:10,259 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:11+08:00" 2021-10-21 10:48:11,019 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:11+08:00" 2021-10-21 10:48:11,635 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:12+08:00" 2021-10-21 10:48:12,388 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:13+08:00" 2021-10-21 10:48:13,123 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:13+08:00" 2021-10-21 10:48:13,890 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:14+08:00" 2021-10-21 10:48:14,849 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:15+08:00" 2021-10-21 10:48:15,680 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:16+08:00" 2021-10-21 10:48:16,551 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:17+08:00" 2021-10-21 10:48:17,450 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:18+08:00" 2021-10-21 10:48:18,338 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:19+08:00" 2021-10-21 10:48:19,133 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:19+08:00" 2021-10-21 10:48:19,934 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:20+08:00" 2021-10-21 10:48:20,688 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:21+08:00" 2021-10-21 10:48:21,482 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:22+08:00" 2021-10-21 10:48:22,269 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:23+08:00" 2021-10-21 10:48:23,047 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:23+08:00" 2021-10-21 10:48:23,993 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:24+08:00" 2021-10-21 10:48:24,719 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:25+08:00" 2021-10-21 10:48:25,412 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:26+08:00" 2021-10-21 10:48:26,192 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:27+08:00" 2021-10-21 10:48:27,001 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:27+08:00" 2021-10-21 10:48:27,781 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:28+08:00" 2021-10-21 10:48:28,682 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:29+08:00" 2021-10-21 10:48:29,655 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:30+08:00" 2021-10-21 10:48:30,543 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:31+08:00" 2021-10-21 10:48:31,369 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:32+08:00" 2021-10-21 10:48:32,217 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:33+08:00" 2021-10-21 10:48:33,070 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:33+08:00" 2021-10-21 10:48:33,879 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:34+08:00" 2021-10-21 10:48:34,625 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:35+08:00" 2021-10-21 10:48:35,497 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:36+08:00" 2021-10-21 10:48:36,356 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:37+08:00" 2021-10-21 10:48:37,067 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:37+08:00" 2021-10-21 10:48:37,818 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 "2021-10-21T10:48:37+08:00" 2021-10-21 10:48:37,819 - mmdet.ssod - INFO - Iter [100/720000] lr: 1.988e-03, eta: 7 days, 9:48:01, time: 0.805, data_time: 0.027, memory: 9884, ema_momentum: 0.9900, sup_loss_rpn_cls: nan, sup_loss_rpn_bbox: nan, sup_loss_cls: nan, sup_acc: 65.5926, sup_loss_bbox: nan, unsup_loss_rpn_cls: nan, unsup_loss_rpn_bbox: nan, unsup_loss_cls: nan, unsup_acc: 76.7965, unsup_loss_bbox: 0.0000, loss: nan "2021-10-21T10:48:38+08:00" 2021-10-21 10:48:38,686 - mmdet.ssod - WARNING - Check overflow, downscale loss scale to 1 . . . 21:39+08:00" Traceback (most recent call last): "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/tools/train.py", line 198, in <module> "2021-10-21T11:21:39+08:00" main() "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/tools/train.py", line 193, in main "2021-10-21T11:21:39+08:00" meta=meta, "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/ssod/apis/train.py", line 206, in train_detector "2021-10-21T11:21:39+08:00" runner.run(data_loaders, cfg.workflow) "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/thirdparty/mmcv-1.3.9/mmcv/runner/iter_based_runner.py", line 133, in run "2021-10-21T11:21:39+08:00" iter_runner(iter_loaders[i], **kwargs) "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/thirdparty/mmcv-1.3.9/mmcv/runner/iter_based_runner.py", line 60, in train "2021-10-21T11:21:39+08:00" outputs = self.model.train_step(data_batch, self.optimizer, **kwargs) "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/thirdparty/mmcv-1.3.9/mmcv/parallel/distributed.py", line 53, in train_step "2021-10-21T11:21:39+08:00" output = self.module.train_step(*inputs[0], **kwargs[0]) "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/thirdparty/mmdetection/mmdet/models/detectors/base.py", line 238, in train_step "2021-10-21T11:21:39+08:00" losses = self(**data) "2021-10-21T11:21:39+08:00" File "/usr/local/miniconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 550, in __call__ "2021-10-21T11:21:39+08:00" result = self.forward(*input, **kwargs) "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/thirdparty/mmcv-1.3.9/mmcv/runner/fp16_utils.py", line 130, in new_func "2021-10-21T11:21:39+08:00" output = old_func(*new_args, **new_kwargs) "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/thirdparty/mmdetection/mmdet/models/detectors/base.py", line 172, in forward "2021-10-21T11:21:39+08:00" return self.forward_train(img, img_metas, **kwargs) "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/ssod/models/soft_teacher.py", line 50, in forward_train "2021-10-21T11:21:39+08:00" data_groups["unsup_teacher"], data_groups["unsup_student"] "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/ssod/models/soft_teacher.py", line 77, in foward_unsup_train "2021-10-21T11:21:39+08:00" return self.compute_pseudo_label_loss(student_info, teacher_info) "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/ssod/models/soft_teacher.py", line 120, in compute_pseudo_label_loss "2021-10-21T11:21:39+08:00" student_info=student_info, "2021-10-21T11:21:39+08:00" File "/data1/train_code/SoftTeacher/ssod/models/soft_teacher.py", line 243, in unsup_rcnn_cls_loss "2021-10-21T11:21:39+08:00" loss["loss_cls"] = loss["loss_cls"].sum() / max(bbox_targets[1].sum(), 1.0) "2021-10-21T11:21:39+08:00" KeyError: 'loss_cls' "2021-10-21T11:21:47+08:00" Traceback (most recent call last): "2021-10-21T11:21:47+08:00" File "/usr/local/miniconda3/lib/python3.6/runpy.py", line 193, in _run_module_as_main "2021-10-21T11:21:47+08:00" "__main__", mod_spec) "2021-10-21T11:21:47+08:00" File "/usr/local/miniconda3/lib/python3.6/runpy.py", line 85, in _run_code "2021-10-21T11:21:47+08:00" exec(code, run_globals) "2021-10-21T11:21:47+08:00" File "/usr/local/miniconda3/lib/python3.6/site-packages/torch/distributed/launch.py", line 263, in <module> "2021-10-21T11:21:47+08:00" main() "2021-10-21T11:21:47+08:00" File "/usr/local/miniconda3/lib/python3.6/site-packages/torch/distributed/launch.py", line 259, in main "2021-10-21T11:21:47+08:00" cmd=cmd) "2021-10-21T11:21:47+08:00" subprocess.CalledProcessError: Command '['/usr/bin/python', '-u', '/data1/train_code/SoftTeacher/tools/train.py', '--local_rank=0', '/data1/train_code/SoftTeacher/configs/exp-test/soft_teacher_faster_rcnn_r50_caffe_fpn_adas_full_720k.py', '--launcher', 'pytorch']' returned non-zero exit status 1. "2021-10-21T11:21:47+08:00" [INFO] recv error: exit status 1 "2021-10-21T11:21:47+08:00" [ERROR] error happends during process: exit status 1 "2021-10-21T11:21:48+08:00" [INFO] still reserved "2021-10-21T11:21:48+08:00" [INFO] recv flag (false) "2021-10-21T11:21:48+08:00" [INFO] sleeping "2021-10-21T11:22:03+08:00" [ERROR] kill process failed with error: timed out waiting for the condition
I think the config is ok. And as you are facing the NaN issue, there are several things you can try:
fp16=None
to the end of the config file. This is to switch the training precision to fp32 and see whether it is an fp16 issue;thank you, I add both of your suggestions and the loss seems to be normal. I wonder all your models are trained with fp16
enabled?
Yes. By default, we use fp16
for all models. I would prefer you to use fp16
by default too as it will save a lot of memory and time while with few performance drop.
I use
soft_teacher_faster_rcnn_r50_caffe_fpn_coco_full_720k.py
to start train process, but got KeyError problem, since I don't haveunlabeled2017
, I usetrain2017
as labeled data, and useval2017
as unlabeled data to test the enviroment, is the problem associated with this operation?