Open leijie0106 opened 3 years ago
Could you post you the full log here?
also getting the same error on the new update
actually this is what i am getting
File "/home/user/anaconda3/envs/pave/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 944, in __init__
self._reset(loader, first_iter=True)
File "/home/user/anaconda3/envs/pave/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 975, in _reset
self._try_put_index()
File "/home/user/anaconda3/envs/pave/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 1209, in _try_put_index
index = self._next_index()
File "/home/user/anaconda3/envs/pave/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 512, in _next_index
return next(self._sampler_iter) # may raise StopIteration
File "/home/user/anaconda3/envs/pave/lib/python3.6/site-packages/torch/utils/data/sampler.py", line 226, in __iter__
for idx in self.sampler:
File "/home/user/pave/semi_supervised_pavement_detector/ssod/datasets/samplers/semi_sampler.py", line 185, in __iter__
assert len(indices) == len(self)
AssertionError
Using cuda 10.2, pytorch 1.9, mmdet 2.16
When I use mmdet 2.17, the problem is solved.
actually this is what i am getting
File "/home/user/anaconda3/envs/pave/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 944, in __init__ self._reset(loader, first_iter=True) File "/home/user/anaconda3/envs/pave/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 975, in _reset self._try_put_index() File "/home/user/anaconda3/envs/pave/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 1209, in _try_put_index index = self._next_index() File "/home/user/anaconda3/envs/pave/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 512, in _next_index return next(self._sampler_iter) # may raise StopIteration File "/home/user/anaconda3/envs/pave/lib/python3.6/site-packages/torch/utils/data/sampler.py", line 226, in __iter__ for idx in self.sampler: File "/home/user/pave/semi_supervised_pavement_detector/ssod/datasets/samplers/semi_sampler.py", line 185, in __iter__ assert len(indices) == len(self) AssertionError
Using cuda 10.2, pytorch 1.9, mmdet 2.16
Did you solve it? If not, may you share your config file here?
When I use mmdet 2.17, the problem is solved.
It also works for me to fix the same bug. Thank you.
@sarmientoj24 @MendelXu ,我也是这个错误,我按照 full labeled data 进行训练的也是报了一样的错误
我输出了indices和self 的长度,确实是不相等,但不知道啥原因,
indices: 0, self: 14660
Traceback (most recent call last):
File "tools/train.py", line 198, in
assert len(indices) == len(self)
AssertionError 你们解决这个问题了吗
When I use mmdet 2.17, the problem is solved. @leijie0106 请问你是怎么解决的,不管我怎么设置都会有下面的错误 换了2.17也有,by_prob设置成False也是一样的错误 assert len(indices) == len(self) AssertionError self.by_prob: True indices: 0, self: 29320
I get the same problem but using mmdet 2.17 still doesn't work for me.
我也遇到了这个问题 怎么解决啊?
这个问题很显著,亟待解决啊
(Soft) smn@smn-Z87X-HD3:/media/smn/Elements SE/SoftTeacher-main$ bash tools/dist_train_partially.sh semi 2 10 1
os.environ('LOCAL_RANK')
instead.
INFO:torch.distributed.launcher.api:Starting elastic_operator with launch configs:
entrypoint : tools/train.py
min_nodes : 1
max_nodes : 1
nproc_per_node : 1
run_id : none
rdzv_backend : static
rdzv_endpoint : 127.0.0.1:29500
rdzv_configs : {'rank': 0, 'timeout': 900}
max_restarts : 3
monitor_interval : 5
log_dir : None
metrics_cfg : {}INFO:torch.distributed.elastic.agent.server.local_elastic_agent:log directory set to: /tmp/torchelastic_f7ekhqpw/none_1gfe0zmq INFO:torch.distributed.elastic.agent.server.api:[default] starting workers for entrypoint: python INFO:torch.distributed.elastic.agent.server.api:[default] Rendezvous'ing worker group /home/smn/anaconda3/envs/Soft/lib/python3.6/site-packages/torch/distributed/elastic/utils/store.py:53: FutureWarning: This is an experimental API and will be changed in future. "This is an experimental API and will be changed in future.", FutureWarning INFO:torch.distributed.elastic.agent.server.api:[default] Rendezvous complete for workers. Result: restart_count=0 master_addr=127.0.0.1 master_port=29500 group_rank=0 group_world_size=1 local_ranks=[0] role_ranks=[0] global_ranks=[0] role_world_sizes=[1] global_world_sizes=[1]
sys.platform: linux Python: 3.6.13 |Anaconda, Inc.| (default, Jun 4 2021, 14:25:59) [GCC 7.5.0] CUDA available: True GPU 0: NVIDIA GeForce GTX 1080 CUDA_HOME: :/usr/local/cuda-10.2 GCC: gcc (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609 PyTorch: 1.9.0+cu102 PyTorch compiling details: PyTorch built with:
2021-12-28 01:59:14,716 - mmdet.ssod - INFO - Distributed training: True 2021-12-28 01:59:17,167 - mmdet.ssod - INFO - Config: model = dict( type='SoftTeacher', model=dict( type='FasterRCNN', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict( type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100))), train_cfg=dict( use_teacher_proposal=False, pseudo_label_initial_score_thr=0.5, rpn_pseudo_threshold=0.9, cls_pseudo_threshold=0.9, reg_pseudo_threshold=0.02, jitter_times=10, jitter_scale=0.06, min_pseduo_box_size=0, unsup_weight=4.0), test_cfg=dict(inference_on='student')) dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5), dict( type='OneOf', transforms=[ dict(type='Identity'), dict(type='AutoContrast'), dict(type='RandEqualize'), dict(type='RandSolarize'), dict(type='RandColor'), dict(type='RandContrast'), dict(type='RandBrightness'), dict(type='RandSharpness'), dict(type='RandPosterize') ]) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='sup'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag')) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type='SemiDataset', sup=dict( type='CocoDataset', ann_file= 'data/coco/annotations/semi_supervised/instances_train2017.2@10.json', img_prefix='data/coco/train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5), dict( type='OneOf', transforms=[ dict(type='Identity'), dict(type='AutoContrast'), dict(type='RandEqualize'), dict(type='RandSolarize'), dict(type='RandColor'), dict(type='RandContrast'), dict(type='RandBrightness'), dict(type='RandSharpness'), dict(type='RandPosterize') ]) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='sup'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag')) ]), unsup=dict( type='CocoDataset', ann_file= 'data/coco/annotations/semi_supervised/instances_train2017.2@10-unlabeled.json', img_prefix='data/coco/train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='PseudoSamples', with_bbox=True), dict( type='MultiBranch', unsup_student=[ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5), dict( type='ShuffledSequential', transforms=[ dict( type='OneOf', transforms=[ dict(type='Identity'), dict(type='AutoContrast'), dict(type='RandEqualize'), dict(type='RandSolarize'), dict(type='RandColor'), dict(type='RandContrast'), dict(type='RandBrightness'), dict(type='RandSharpness'), dict(type='RandPosterize') ]), dict( type='OneOf', transforms=[{ 'type': 'RandTranslate', 'x': (-0.1, 0.1) }, { 'type': 'RandTranslate', 'y': (-0.1, 0.1) }, { 'type': 'RandRotate', 'angle': (-30, 30) }, [{ 'type': 'RandShear', 'x': (-30, 30) }, { 'type': 'RandShear', 'y': (-30, 30) }]]) ]), dict( type='RandErase', n_iterations=(1, 5), size=[0, 0.2], squared=True) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_student'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ], unsup_teacher=[ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_teacher'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ]) ], filter_empty_gt=False)), val=dict( type='CocoDataset', ann_file='data/coco/annotations/instances_val2017.json', img_prefix='data/coco/val2017/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ]), test=dict( type='CocoDataset', ann_file='data/coco/annotations/instances_val2017.json', img_prefix='data/coco/val2017/', pipeline=[ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ]) ]), sampler=dict( train=dict( type='SemiBalanceSampler', sample_ratio=[1, 4], by_prob=True, epoch_length=7330))) evaluation = dict(interval=4000, metric='bbox', type='SubModulesDistEvalHook') optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[120000, 160000]) runner = dict(type='IterBasedRunner', max_iters=180000) checkpoint_config = dict(interval=4000, by_epoch=False, max_keep_ckpts=20) log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), dict( type='WandbLoggerHook', init_kwargs=dict( project='pre_release', name='soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k', config=dict( fold=2, percent=10, work_dirs='work_dirs/${cfg_name}/${percent}/${fold}', total_step=180000)), by_epoch=False) ]) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='WeightSummary'), dict(type='MeanTeacher', momentum=0.999, interval=1, warm_up=0) ] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] mmdet_base = '../../thirdparty/mmdetection/configs/base' strong_pipeline = [ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5), dict( type='ShuffledSequential', transforms=[ dict( type='OneOf', transforms=[ dict(type='Identity'), dict(type='AutoContrast'), dict(type='RandEqualize'), dict(type='RandSolarize'), dict(type='RandColor'), dict(type='RandContrast'), dict(type='RandBrightness'), dict(type='RandSharpness'), dict(type='RandPosterize') ]), dict( type='OneOf', transforms=[{ 'type': 'RandTranslate', 'x': (-0.1, 0.1) }, { 'type': 'RandTranslate', 'y': (-0.1, 0.1) }, { 'type': 'RandRotate', 'angle': (-30, 30) }, [{ 'type': 'RandShear', 'x': (-30, 30) }, { 'type': 'RandShear', 'y': (-30, 30) }]]) ]), dict( type='RandErase', n_iterations=(1, 5), size=[0, 0.2], squared=True) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_student'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ] weak_pipeline = [ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_teacher'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ] unsup_pipeline = [ dict(type='LoadImageFromFile'), dict(type='PseudoSamples', with_bbox=True), dict( type='MultiBranch', unsup_student=[ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5), dict( type='ShuffledSequential', transforms=[ dict( type='OneOf', transforms=[ dict(type='Identity'), dict(type='AutoContrast'), dict(type='RandEqualize'), dict(type='RandSolarize'), dict(type='RandColor'), dict(type='RandContrast'), dict(type='RandBrightness'), dict(type='RandSharpness'), dict(type='RandPosterize') ]), dict( type='OneOf', transforms=[{ 'type': 'RandTranslate', 'x': (-0.1, 0.1) }, { 'type': 'RandTranslate', 'y': (-0.1, 0.1) }, { 'type': 'RandRotate', 'angle': (-30, 30) }, [{ 'type': 'RandShear', 'x': (-30, 30) }, { 'type': 'RandShear', 'y': (-30, 30) }]]) ]), dict( type='RandErase', n_iterations=(1, 5), size=[0, 0.2], squared=True) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_student'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ], unsup_teacher=[ dict( type='Sequential', transforms=[ dict( type='RandResize', img_scale=[(1333, 400), (1333, 1200)], multiscale_mode='range', keep_ratio=True), dict(type='RandFlip', flip_ratio=0.5) ], record=True), dict(type='Pad', size_divisor=32), dict( type='Normalize', mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False), dict(type='ExtraAttrs', tag='unsup_teacher'), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg', 'pad_shape', 'scale_factor', 'tag', 'transform_matrix')) ]) ] fp16 = dict(loss_scale='dynamic') fold = 2 percent = 10 work_dir = 'work_dirs/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k/10/2' cfg_name = 'soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k' gpu_ids = range(0, 1)
/home/smn/anaconda3/envs/Soft/lib/python3.6/site-packages/mmdet/core/anchor/builder.py:17: UserWarning: build_anchor_generator
would be deprecated soon, please use build_prior_generator
'build_anchor_generator
would be deprecated soon, please use '
2021-12-28 01:59:17,819 - mmcv - INFO - load model from: open-mmlab://detectron2/resnet50_caffe
2021-12-28 01:59:17,819 - mmcv - INFO - Use load_from_openmmlab loader
2021-12-28 01:59:17,876 - mmcv - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: conv1.bias
2021-12-28 01:59:18,055 - mmcv - INFO - load model from: open-mmlab://detectron2/resnet50_caffe 2021-12-28 01:59:18,056 - mmcv - INFO - Use load_from_openmmlab loader 2021-12-28 01:59:18,103 - mmcv - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: conv1.bias
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
loading annotations into memory...
Done (t=0.12s)
creating index...
index created!
fatal: Not a git repository (or any parent up to mount point /media/smn/Elements SE)
Stopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).
loading annotations into memory...
Done (t=0.02s)
creating index...
index created!
2021-12-28 01:59:20,405 - mmdet.ssod - INFO - Start running, host: smn@smn-Z87X-HD3, work_dir: /media/smn/Elements SE/SoftTeacher-main/work_dirs/soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k/10/2
2021-12-28 01:59:20,406 - mmdet.ssod - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) StepLrUpdaterHook
(ABOVE_NORMAL) Fp16OptimizerHook
(NORMAL ) CheckpointHook
(NORMAL ) WeightSummary
(NORMAL ) MeanTeacher
(80 ) SubModulesDistEvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) WandbLoggerHook
before_train_epoch:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) IterTimerHook
(NORMAL ) NumClassCheckHook
(80 ) SubModulesDistEvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) WandbLoggerHook
before_train_iter:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) IterTimerHook
(NORMAL ) MeanTeacher
(80 ) SubModulesDistEvalHook
after_train_iter:
(ABOVE_NORMAL) Fp16OptimizerHook
(NORMAL ) CheckpointHook
(NORMAL ) IterTimerHook
(NORMAL ) MeanTeacher
(80 ) SubModulesDistEvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) WandbLoggerHook
after_train_epoch:
(NORMAL ) CheckpointHook
(80 ) SubModulesDistEvalHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) WandbLoggerHook
before_val_epoch:
(NORMAL ) IterTimerHook
(NORMAL ) NumClassCheckHook
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) WandbLoggerHook
before_val_iter: (NORMAL ) IterTimerHook
after_val_iter: (NORMAL ) IterTimerHook
after_val_epoch:
(VERY_LOW ) TextLoggerHook
(VERY_LOW ) WandbLoggerHook
after_run: (VERY_LOW ) WandbLoggerHook
2021-12-28 01:59:20,407 - mmdet.ssod - INFO - workflow: [('train', 1)], max: 180000 iters
2021-12-28 01:59:20,474 - mmdet.ssod - INFO -
+--------------------------------------------------------------------------------------------------------------------+
| Model Information |
+------------------------------------------------+-----------+---------------+-----------------------+------+--------+
| Name | Optimized | Shape | Value Scale [Min,Max] | Lr | Wd |
+------------------------------------------------+-----------+---------------+-----------------------+------+--------+
| teacher.backbone.conv1.weight | N | 64X3X7X7 | Min:-0.671 Max:0.704 | 0.01 | 0.0001 |
| teacher.backbone.bn1.weight | N | 64 | Min:0.513 Max:2.669 | 0.01 | 0.0001 |
| teacher.backbone.bn1.bias | N | 64 | Min:-2.654 Max:6.354 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.conv1.weight | N | 64X64X1X1 | Min:-0.717 Max:0.392 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.bn1.weight | N | 64 | Min:0.509 Max:2.066 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.bn1.bias | N | 64 | Min:-2.411 Max:3.608 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.conv2.weight | N | 64X64X3X3 | Min:-0.390 Max:0.364 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.bn2.weight | N | 64 | Min:0.420 Max:2.530 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.bn2.bias | N | 64 | Min:-2.286 Max:5.913 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.conv3.weight | N | 256X64X1X1 | Min:-0.397 Max:0.348 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.bn3.weight | N | 256 | Min:0.011 Max:2.820 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.bn3.bias | N | 256 | Min:-1.126 Max:1.522 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.downsample.0.weight | N | 256X64X1X1 | Min:-0.772 Max:0.900 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.downsample.1.weight | N | 256 | Min:0.004 Max:3.064 | 0.01 | 0.0001 |
| teacher.backbone.layer1.0.downsample.1.bias | N | 256 | Min:-1.126 Max:1.522 | 0.01 | 0.0001 |
| teacher.backbone.layer1.1.conv1.weight | N | 64X256X1X1 | Min:-0.297 Max:0.220 | 0.01 | 0.0001 |
| teacher.backbone.layer1.1.bn1.weight | N | 64 | Min:0.746 Max:1.949 | 0.01 | 0.0001 |
| teacher.backbone.layer1.1.bn1.bias | N | 64 | Min:-1.688 Max:1.578 | 0.01 | 0.0001 |
| teacher.backbone.layer1.1.conv2.weight | N | 64X64X3X3 | Min:-0.240 Max:0.318 | 0.01 | 0.0001 |
| teacher.backbone.layer1.1.bn2.weight | N | 64 | Min:0.621 Max:1.618 | 0.01 | 0.0001 |
| teacher.backbone.layer1.1.bn2.bias | N | 64 | Min:-2.003 Max:2.398 | 0.01 | 0.0001 |
| teacher.backbone.layer1.1.conv3.weight | N | 256X64X1X1 | Min:-0.240 Max:0.280 | 0.01 | 0.0001 |
| teacher.backbone.layer1.1.bn3.weight | N | 256 | Min:-0.017 Max:2.130 | 0.01 | 0.0001 |
| teacher.backbone.layer1.1.bn3.bias | N | 256 | Min:-1.711 Max:1.291 | 0.01 | 0.0001 |
| teacher.backbone.layer1.2.conv1.weight | N | 64X256X1X1 | Min:-0.210 Max:0.264 | 0.01 | 0.0001 |
| teacher.backbone.layer1.2.bn1.weight | N | 64 | Min:0.574 Max:1.688 | 0.01 | 0.0001 |
| teacher.backbone.layer1.2.bn1.bias | N | 64 | Min:-1.876 Max:1.090 | 0.01 | 0.0001 |
| teacher.backbone.layer1.2.conv2.weight | N | 64X64X3X3 | Min:-0.218 Max:0.201 | 0.01 | 0.0001 |
| teacher.backbone.layer1.2.bn2.weight | N | 64 | Min:0.757 Max:1.649 | 0.01 | 0.0001 |
| teacher.backbone.layer1.2.bn2.bias | N | 64 | Min:-2.221 Max:1.878 | 0.01 | 0.0001 |
| teacher.backbone.layer1.2.conv3.weight | N | 256X64X1X1 | Min:-0.275 Max:0.350 | 0.01 | 0.0001 |
| teacher.backbone.layer1.2.bn3.weight | N | 256 | Min:-0.058 Max:2.154 | 0.01 | 0.0001 |
| teacher.backbone.layer1.2.bn3.bias | N | 256 | Min:-1.570 Max:1.535 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.conv1.weight | N | 128X256X1X1 | Min:-0.334 Max:0.300 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.bn1.weight | N | 128 | Min:0.610 Max:1.642 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.bn1.bias | N | 128 | Min:-1.579 Max:1.449 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.conv2.weight | N | 128X128X3X3 | Min:-0.384 Max:0.377 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.bn2.weight | N | 128 | Min:0.605 Max:1.622 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.bn2.bias | N | 128 | Min:-2.768 Max:1.747 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.conv3.weight | N | 512X128X1X1 | Min:-0.374 Max:0.434 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.bn3.weight | N | 512 | Min:-0.007 Max:2.730 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.bn3.bias | N | 512 | Min:-1.545 Max:1.256 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.downsample.0.weight | N | 512X256X1X1 | Min:-0.466 Max:0.642 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.downsample.1.weight | N | 512 | Min:0.006 Max:2.552 | 0.01 | 0.0001 |
| teacher.backbone.layer2.0.downsample.1.bias | N | 512 | Min:-1.545 Max:1.256 | 0.01 | 0.0001 |
| teacher.backbone.layer2.1.conv1.weight | N | 128X512X1X1 | Min:-0.162 Max:0.195 | 0.01 | 0.0001 |
| teacher.backbone.layer2.1.bn1.weight | N | 128 | Min:0.578 Max:1.429 | 0.01 | 0.0001 |
| teacher.backbone.layer2.1.bn1.bias | N | 128 | Min:-4.348 Max:0.588 | 0.01 | 0.0001 |
| teacher.backbone.layer2.1.conv2.weight | N | 128X128X3X3 | Min:-0.176 Max:0.177 | 0.01 | 0.0001 |
| teacher.backbone.layer2.1.bn2.weight | N | 128 | Min:0.511 Max:1.794 | 0.01 | 0.0001 |
| teacher.backbone.layer2.1.bn2.bias | N | 128 | Min:-3.825 Max:1.343 | 0.01 | 0.0001 |
| teacher.backbone.layer2.1.conv3.weight | N | 512X128X1X1 | Min:-0.344 Max:0.336 | 0.01 | 0.0001 |
| teacher.backbone.layer2.1.bn3.weight | N | 512 | Min:-0.072 Max:2.122 | 0.01 | 0.0001 |
| teacher.backbone.layer2.1.bn3.bias | N | 512 | Min:-1.502 Max:1.166 | 0.01 | 0.0001 |
| teacher.backbone.layer2.2.conv1.weight | N | 128X512X1X1 | Min:-0.330 Max:0.369 | 0.01 | 0.0001 |
| teacher.backbone.layer2.2.bn1.weight | N | 128 | Min:0.406 Max:1.696 | 0.01 | 0.0001 |
| teacher.backbone.layer2.2.bn1.bias | N | 128 | Min:-2.696 Max:1.944 | 0.01 | 0.0001 |
| teacher.backbone.layer2.2.conv2.weight | N | 128X128X3X3 | Min:-0.326 Max:0.374 | 0.01 | 0.0001 |
| teacher.backbone.layer2.2.bn2.weight | N | 128 | Min:0.460 Max:2.179 | 0.01 | 0.0001 |
| teacher.backbone.layer2.2.bn2.bias | N | 128 | Min:-1.587 Max:0.589 | 0.01 | 0.0001 |
| teacher.backbone.layer2.2.conv3.weight | N | 512X128X1X1 | Min:-0.288 Max:0.232 | 0.01 | 0.0001 |
| teacher.backbone.layer2.2.bn3.weight | N | 512 | Min:-0.006 Max:3.043 | 0.01 | 0.0001 |
| teacher.backbone.layer2.2.bn3.bias | N | 512 | Min:-2.369 Max:0.440 | 0.01 | 0.0001 |
| teacher.backbone.layer2.3.conv1.weight | N | 128X512X1X1 | Min:-0.298 Max:0.346 | 0.01 | 0.0001 |
| teacher.backbone.layer2.3.bn1.weight | N | 128 | Min:0.736 Max:2.394 | 0.01 | 0.0001 |
| teacher.backbone.layer2.3.bn1.bias | N | 128 | Min:-2.643 Max:0.756 | 0.01 | 0.0001 |
| teacher.backbone.layer2.3.conv2.weight | N | 128X128X3X3 | Min:-0.272 Max:0.208 | 0.01 | 0.0001 |
| teacher.backbone.layer2.3.bn2.weight | N | 128 | Min:0.682 Max:1.694 | 0.01 | 0.0001 |
| teacher.backbone.layer2.3.bn2.bias | N | 128 | Min:-1.365 Max:1.599 | 0.01 | 0.0001 |
| teacher.backbone.layer2.3.conv3.weight | N | 512X128X1X1 | Min:-0.279 Max:0.281 | 0.01 | 0.0001 |
| teacher.backbone.layer2.3.bn3.weight | N | 512 | Min:-0.009 Max:1.721 | 0.01 | 0.0001 |
| teacher.backbone.layer2.3.bn3.bias | N | 512 | Min:-1.897 Max:1.182 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.conv1.weight | N | 256X512X1X1 | Min:-0.230 Max:0.341 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.bn1.weight | N | 256 | Min:0.621 Max:1.636 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.bn1.bias | N | 256 | Min:-1.420 Max:0.917 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.conv2.weight | N | 256X256X3X3 | Min:-0.267 Max:0.179 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.bn2.weight | N | 256 | Min:0.585 Max:1.749 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.bn2.bias | N | 256 | Min:-1.837 Max:1.398 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.conv3.weight | N | 1024X256X1X1 | Min:-0.333 Max:0.384 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.bn3.weight | N | 1024 | Min:0.071 Max:2.367 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.bn3.bias | N | 1024 | Min:-0.938 Max:0.887 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.downsample.0.weight | N | 1024X512X1X1 | Min:-0.333 Max:0.421 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.downsample.1.weight | N | 1024 | Min:0.034 Max:2.779 | 0.01 | 0.0001 |
| teacher.backbone.layer3.0.downsample.1.bias | N | 1024 | Min:-0.938 Max:0.887 | 0.01 | 0.0001 |
| teacher.backbone.layer3.1.conv1.weight | N | 256X1024X1X1 | Min:-0.197 Max:0.236 | 0.01 | 0.0001 |
| teacher.backbone.layer3.1.bn1.weight | N | 256 | Min:0.566 Max:1.743 | 0.01 | 0.0001 |
| teacher.backbone.layer3.1.bn1.bias | N | 256 | Min:-2.703 Max:1.042 | 0.01 | 0.0001 |
| teacher.backbone.layer3.1.conv2.weight | N | 256X256X3X3 | Min:-0.436 Max:0.196 | 0.01 | 0.0001 |
| teacher.backbone.layer3.1.bn2.weight | N | 256 | Min:0.515 Max:2.301 | 0.01 | 0.0001 |
| teacher.backbone.layer3.1.bn2.bias | N | 256 | Min:-2.548 Max:1.856 | 0.01 | 0.0001 |
| teacher.backbone.layer3.1.conv3.weight | N | 1024X256X1X1 | Min:-0.438 Max:0.295 | 0.01 | 0.0001 |
| teacher.backbone.layer3.1.bn3.weight | N | 1024 | Min:0.055 Max:1.943 | 0.01 | 0.0001 |
| teacher.backbone.layer3.1.bn3.bias | N | 1024 | Min:-1.647 Max:1.016 | 0.01 | 0.0001 |
| teacher.backbone.layer3.2.conv1.weight | N | 256X1024X1X1 | Min:-0.387 Max:0.337 | 0.01 | 0.0001 |
| teacher.backbone.layer3.2.bn1.weight | N | 256 | Min:0.463 Max:1.886 | 0.01 | 0.0001 |
| teacher.backbone.layer3.2.bn1.bias | N | 256 | Min:-2.399 Max:0.488 | 0.01 | 0.0001 |
| teacher.backbone.layer3.2.conv2.weight | N | 256X256X3X3 | Min:-0.165 Max:0.258 | 0.01 | 0.0001 |
| teacher.backbone.layer3.2.bn2.weight | N | 256 | Min:0.555 Max:1.901 | 0.01 | 0.0001 |
| teacher.backbone.layer3.2.bn2.bias | N | 256 | Min:-1.655 Max:0.704 | 0.01 | 0.0001 |
| teacher.backbone.layer3.2.conv3.weight | N | 1024X256X1X1 | Min:-0.290 Max:0.261 | 0.01 | 0.0001 |
| teacher.backbone.layer3.2.bn3.weight | N | 1024 | Min:0.049 Max:1.450 | 0.01 | 0.0001 |
| teacher.backbone.layer3.2.bn3.bias | N | 1024 | Min:-1.201 Max:0.587 | 0.01 | 0.0001 |
| teacher.backbone.layer3.3.conv1.weight | N | 256X1024X1X1 | Min:-0.194 Max:0.295 | 0.01 | 0.0001 |
| teacher.backbone.layer3.3.bn1.weight | N | 256 | Min:0.442 Max:1.353 | 0.01 | 0.0001 |
| teacher.backbone.layer3.3.bn1.bias | N | 256 | Min:-2.322 Max:0.509 | 0.01 | 0.0001 |
| teacher.backbone.layer3.3.conv2.weight | N | 256X256X3X3 | Min:-0.201 Max:0.176 | 0.01 | 0.0001 |
| teacher.backbone.layer3.3.bn2.weight | N | 256 | Min:0.529 Max:1.939 | 0.01 | 0.0001 |
| teacher.backbone.layer3.3.bn2.bias | N | 256 | Min:-1.610 Max:0.776 | 0.01 | 0.0001 |
| teacher.backbone.layer3.3.conv3.weight | N | 1024X256X1X1 | Min:-0.205 Max:0.239 | 0.01 | 0.0001 |
| teacher.backbone.layer3.3.bn3.weight | N | 1024 | Min:-0.037 Max:1.646 | 0.01 | 0.0001 |
| teacher.backbone.layer3.3.bn3.bias | N | 1024 | Min:-1.484 Max:0.344 | 0.01 | 0.0001 |
| teacher.backbone.layer3.4.conv1.weight | N | 256X1024X1X1 | Min:-0.226 Max:0.306 | 0.01 | 0.0001 |
| teacher.backbone.layer3.4.bn1.weight | N | 256 | Min:0.438 Max:1.446 | 0.01 | 0.0001 |
| teacher.backbone.layer3.4.bn1.bias | N | 256 | Min:-2.511 Max:0.557 | 0.01 | 0.0001 |
| teacher.backbone.layer3.4.conv2.weight | N | 256X256X3X3 | Min:-0.147 Max:0.223 | 0.01 | 0.0001 |
| teacher.backbone.layer3.4.bn2.weight | N | 256 | Min:0.651 Max:1.858 | 0.01 | 0.0001 |
| teacher.backbone.layer3.4.bn2.bias | N | 256 | Min:-1.588 Max:0.661 | 0.01 | 0.0001 |
| teacher.backbone.layer3.4.conv3.weight | N | 1024X256X1X1 | Min:-0.178 Max:0.265 | 0.01 | 0.0001 |
| teacher.backbone.layer3.4.bn3.weight | N | 1024 | Min:-0.001 Max:1.501 | 0.01 | 0.0001 |
| teacher.backbone.layer3.4.bn3.bias | N | 1024 | Min:-1.108 Max:0.639 | 0.01 | 0.0001 |
| teacher.backbone.layer3.5.conv1.weight | N | 256X1024X1X1 | Min:-0.153 Max:0.330 | 0.01 | 0.0001 |
| teacher.backbone.layer3.5.bn1.weight | N | 256 | Min:0.425 Max:1.547 | 0.01 | 0.0001 |
| teacher.backbone.layer3.5.bn1.bias | N | 256 | Min:-1.972 Max:0.823 | 0.01 | 0.0001 |
| teacher.backbone.layer3.5.conv2.weight | N | 256X256X3X3 | Min:-0.293 Max:0.276 | 0.01 | 0.0001 |
| teacher.backbone.layer3.5.bn2.weight | N | 256 | Min:0.650 Max:2.942 | 0.01 | 0.0001 |
| teacher.backbone.layer3.5.bn2.bias | N | 256 | Min:-1.093 Max:0.771 | 0.01 | 0.0001 |
| teacher.backbone.layer3.5.conv3.weight | N | 1024X256X1X1 | Min:-0.232 Max:0.294 | 0.01 | 0.0001 |
| teacher.backbone.layer3.5.bn3.weight | N | 1024 | Min:0.004 Max:1.984 | 0.01 | 0.0001 |
| teacher.backbone.layer3.5.bn3.bias | N | 1024 | Min:-1.636 Max:1.250 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.conv1.weight | N | 512X1024X1X1 | Min:-0.184 Max:0.331 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.bn1.weight | N | 512 | Min:0.535 Max:1.594 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.bn1.bias | N | 512 | Min:-1.756 Max:0.288 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.conv2.weight | N | 512X512X3X3 | Min:-0.175 Max:0.272 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.bn2.weight | N | 512 | Min:0.456 Max:1.542 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.bn2.bias | N | 512 | Min:-1.820 Max:0.839 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.conv3.weight | N | 2048X512X1X1 | Min:-0.332 Max:0.432 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.bn3.weight | N | 2048 | Min:0.888 Max:3.492 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.bn3.bias | N | 2048 | Min:-1.810 Max:0.980 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.downsample.0.weight | N | 2048X1024X1X1 | Min:-0.622 Max:0.465 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.downsample.1.weight | N | 2048 | Min:0.261 Max:4.575 | 0.01 | 0.0001 |
| teacher.backbone.layer4.0.downsample.1.bias | N | 2048 | Min:-1.810 Max:0.980 | 0.01 | 0.0001 |
| teacher.backbone.layer4.1.conv1.weight | N | 512X2048X1X1 | Min:-0.316 Max:0.577 | 0.01 | 0.0001 |
| teacher.backbone.layer4.1.bn1.weight | N | 512 | Min:0.398 Max:1.429 | 0.01 | 0.0001 |
| teacher.backbone.layer4.1.bn1.bias | N | 512 | Min:-1.380 Max:0.428 | 0.01 | 0.0001 |
| teacher.backbone.layer4.1.conv2.weight | N | 512X512X3X3 | Min:-0.217 Max:0.284 | 0.01 | 0.0001 |
| teacher.backbone.layer4.1.bn2.weight | N | 512 | Min:0.349 Max:1.550 | 0.01 | 0.0001 |
| teacher.backbone.layer4.1.bn2.bias | N | 512 | Min:-1.867 Max:0.880 | 0.01 | 0.0001 |
| teacher.backbone.layer4.1.conv3.weight | N | 2048X512X1X1 | Min:-0.200 Max:0.277 | 0.01 | 0.0001 |
| teacher.backbone.layer4.1.bn3.weight | N | 2048 | Min:0.574 Max:2.847 | 0.01 | 0.0001 |
| teacher.backbone.layer4.1.bn3.bias | N | 2048 | Min:-2.638 Max:0.544 | 0.01 | 0.0001 |
| teacher.backbone.layer4.2.conv1.weight | N | 512X2048X1X1 | Min:-0.289 Max:0.514 | 0.01 | 0.0001 |
| teacher.backbone.layer4.2.bn1.weight | N | 512 | Min:0.366 Max:1.249 | 0.01 | 0.0001 |
| teacher.backbone.layer4.2.bn1.bias | N | 512 | Min:-1.664 Max:0.753 | 0.01 | 0.0001 |
| teacher.backbone.layer4.2.conv2.weight | N | 512X512X3X3 | Min:-0.142 Max:0.144 | 0.01 | 0.0001 |
| teacher.backbone.layer4.2.bn2.weight | N | 512 | Min:0.516 Max:1.335 | 0.01 | 0.0001 |
| teacher.backbone.layer4.2.bn2.bias | N | 512 | Min:-1.871 Max:1.181 | 0.01 | 0.0001 |
| teacher.backbone.layer4.2.conv3.weight | N | 2048X512X1X1 | Min:-0.135 Max:0.300 | 0.01 | 0.0001 |
| teacher.backbone.layer4.2.bn3.weight | N | 2048 | Min:0.435 Max:3.073 | 0.01 | 0.0001 |
| teacher.backbone.layer4.2.bn3.bias | N | 2048 | Min:-3.885 Max:-0.249 | 0.01 | 0.0001 |
| teacher.neck.lateral_convs.0.conv.weight | N | 256X256X1X1 | Min:-0.108 Max:0.108 | 0.01 | 0.0001 |
| teacher.neck.lateral_convs.0.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.neck.lateral_convs.1.conv.weight | N | 256X512X1X1 | Min:-0.088 Max:0.088 | 0.01 | 0.0001 |
| teacher.neck.lateral_convs.1.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.neck.lateral_convs.2.conv.weight | N | 256X1024X1X1 | Min:-0.068 Max:0.068 | 0.01 | 0.0001 |
| teacher.neck.lateral_convs.2.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.neck.lateral_convs.3.conv.weight | N | 256X2048X1X1 | Min:-0.051 Max:0.051 | 0.01 | 0.0001 |
| teacher.neck.lateral_convs.3.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.neck.fpn_convs.0.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 |
| teacher.neck.fpn_convs.0.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.neck.fpn_convs.1.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 |
| teacher.neck.fpn_convs.1.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.neck.fpn_convs.2.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 |
| teacher.neck.fpn_convs.2.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.neck.fpn_convs.3.conv.weight | N | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 |
| teacher.neck.fpn_convs.3.conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.rpn_head.rpn_conv.weight | N | 256X256X3X3 | Min:-0.046 Max:0.053 | 0.01 | 0.0001 |
| teacher.rpn_head.rpn_conv.bias | N | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.rpn_head.rpn_cls.weight | N | 3X256X1X1 | Min:-0.034 Max:0.040 | 0.01 | 0.0001 |
| teacher.rpn_head.rpn_cls.bias | N | 3 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.rpn_head.rpn_reg.weight | N | 12X256X1X1 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 |
| teacher.rpn_head.rpn_reg.bias | N | 12 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.roi_head.bbox_head.fc_cls.weight | N | 81X1024 | Min:-0.193 Max:0.199 | 0.01 | 0.0001 |
| teacher.roi_head.bbox_head.fc_cls.bias | N | 81 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.roi_head.bbox_head.fc_reg.weight | N | 320X1024 | Min:-0.180 Max:0.180 | 0.01 | 0.0001 |
| teacher.roi_head.bbox_head.fc_reg.bias | N | 320 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.roi_head.bbox_head.shared_fcs.0.weight | N | 1024X12544 | Min:-0.064 Max:0.064 | 0.01 | 0.0001 |
| teacher.roi_head.bbox_head.shared_fcs.0.bias | N | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| teacher.roi_head.bbox_head.shared_fcs.1.weight | N | 1024X1024 | Min:-0.151 Max:0.157 | 0.01 | 0.0001 |
| teacher.roi_head.bbox_head.shared_fcs.1.bias | N | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.backbone.conv1.weight | N | 64X3X7X7 | Min:-0.671 Max:0.704 | 0.01 | 0.0001 |
| student.backbone.bn1.weight | N | 64 | Min:0.513 Max:2.669 | 0.01 | 0.0001 |
| student.backbone.bn1.bias | N | 64 | Min:-2.654 Max:6.354 | 0.01 | 0.0001 |
| student.backbone.layer1.0.conv1.weight | N | 64X64X1X1 | Min:-0.717 Max:0.392 | 0.01 | 0.0001 |
| student.backbone.layer1.0.bn1.weight | N | 64 | Min:0.509 Max:2.066 | 0.01 | 0.0001 |
| student.backbone.layer1.0.bn1.bias | N | 64 | Min:-2.411 Max:3.608 | 0.01 | 0.0001 |
| student.backbone.layer1.0.conv2.weight | N | 64X64X3X3 | Min:-0.390 Max:0.364 | 0.01 | 0.0001 |
| student.backbone.layer1.0.bn2.weight | N | 64 | Min:0.420 Max:2.530 | 0.01 | 0.0001 |
| student.backbone.layer1.0.bn2.bias | N | 64 | Min:-2.286 Max:5.913 | 0.01 | 0.0001 |
| student.backbone.layer1.0.conv3.weight | N | 256X64X1X1 | Min:-0.397 Max:0.348 | 0.01 | 0.0001 |
| student.backbone.layer1.0.bn3.weight | N | 256 | Min:0.011 Max:2.820 | 0.01 | 0.0001 |
| student.backbone.layer1.0.bn3.bias | N | 256 | Min:-1.126 Max:1.522 | 0.01 | 0.0001 |
| student.backbone.layer1.0.downsample.0.weight | N | 256X64X1X1 | Min:-0.772 Max:0.900 | 0.01 | 0.0001 |
| student.backbone.layer1.0.downsample.1.weight | N | 256 | Min:0.004 Max:3.064 | 0.01 | 0.0001 |
| student.backbone.layer1.0.downsample.1.bias | N | 256 | Min:-1.126 Max:1.522 | 0.01 | 0.0001 |
| student.backbone.layer1.1.conv1.weight | N | 64X256X1X1 | Min:-0.297 Max:0.220 | 0.01 | 0.0001 |
| student.backbone.layer1.1.bn1.weight | N | 64 | Min:0.746 Max:1.949 | 0.01 | 0.0001 |
| student.backbone.layer1.1.bn1.bias | N | 64 | Min:-1.688 Max:1.578 | 0.01 | 0.0001 |
| student.backbone.layer1.1.conv2.weight | N | 64X64X3X3 | Min:-0.240 Max:0.318 | 0.01 | 0.0001 |
| student.backbone.layer1.1.bn2.weight | N | 64 | Min:0.621 Max:1.618 | 0.01 | 0.0001 |
| student.backbone.layer1.1.bn2.bias | N | 64 | Min:-2.003 Max:2.398 | 0.01 | 0.0001 |
| student.backbone.layer1.1.conv3.weight | N | 256X64X1X1 | Min:-0.240 Max:0.280 | 0.01 | 0.0001 |
| student.backbone.layer1.1.bn3.weight | N | 256 | Min:-0.017 Max:2.130 | 0.01 | 0.0001 |
| student.backbone.layer1.1.bn3.bias | N | 256 | Min:-1.711 Max:1.291 | 0.01 | 0.0001 |
| student.backbone.layer1.2.conv1.weight | N | 64X256X1X1 | Min:-0.210 Max:0.264 | 0.01 | 0.0001 |
| student.backbone.layer1.2.bn1.weight | N | 64 | Min:0.574 Max:1.688 | 0.01 | 0.0001 |
| student.backbone.layer1.2.bn1.bias | N | 64 | Min:-1.876 Max:1.090 | 0.01 | 0.0001 |
| student.backbone.layer1.2.conv2.weight | N | 64X64X3X3 | Min:-0.218 Max:0.201 | 0.01 | 0.0001 |
| student.backbone.layer1.2.bn2.weight | N | 64 | Min:0.757 Max:1.649 | 0.01 | 0.0001 |
| student.backbone.layer1.2.bn2.bias | N | 64 | Min:-2.221 Max:1.878 | 0.01 | 0.0001 |
| student.backbone.layer1.2.conv3.weight | N | 256X64X1X1 | Min:-0.275 Max:0.350 | 0.01 | 0.0001 |
| student.backbone.layer1.2.bn3.weight | N | 256 | Min:-0.058 Max:2.154 | 0.01 | 0.0001 |
| student.backbone.layer1.2.bn3.bias | N | 256 | Min:-1.570 Max:1.535 | 0.01 | 0.0001 |
| student.backbone.layer2.0.conv1.weight | Y | 128X256X1X1 | Min:-0.334 Max:0.300 | 0.01 | 0.0001 |
| student.backbone.layer2.0.bn1.weight | N | 128 | Min:0.610 Max:1.642 | 0.01 | 0.0001 |
| student.backbone.layer2.0.bn1.bias | N | 128 | Min:-1.579 Max:1.449 | 0.01 | 0.0001 |
| student.backbone.layer2.0.conv2.weight | Y | 128X128X3X3 | Min:-0.384 Max:0.377 | 0.01 | 0.0001 |
| student.backbone.layer2.0.bn2.weight | N | 128 | Min:0.605 Max:1.622 | 0.01 | 0.0001 |
| student.backbone.layer2.0.bn2.bias | N | 128 | Min:-2.768 Max:1.747 | 0.01 | 0.0001 |
| student.backbone.layer2.0.conv3.weight | Y | 512X128X1X1 | Min:-0.374 Max:0.434 | 0.01 | 0.0001 |
| student.backbone.layer2.0.bn3.weight | N | 512 | Min:-0.007 Max:2.730 | 0.01 | 0.0001 |
| student.backbone.layer2.0.bn3.bias | N | 512 | Min:-1.545 Max:1.256 | 0.01 | 0.0001 |
| student.backbone.layer2.0.downsample.0.weight | Y | 512X256X1X1 | Min:-0.466 Max:0.642 | 0.01 | 0.0001 |
| student.backbone.layer2.0.downsample.1.weight | N | 512 | Min:0.006 Max:2.552 | 0.01 | 0.0001 |
| student.backbone.layer2.0.downsample.1.bias | N | 512 | Min:-1.545 Max:1.256 | 0.01 | 0.0001 |
| student.backbone.layer2.1.conv1.weight | Y | 128X512X1X1 | Min:-0.162 Max:0.195 | 0.01 | 0.0001 |
| student.backbone.layer2.1.bn1.weight | N | 128 | Min:0.578 Max:1.429 | 0.01 | 0.0001 |
| student.backbone.layer2.1.bn1.bias | N | 128 | Min:-4.348 Max:0.588 | 0.01 | 0.0001 |
| student.backbone.layer2.1.conv2.weight | Y | 128X128X3X3 | Min:-0.176 Max:0.177 | 0.01 | 0.0001 |
| student.backbone.layer2.1.bn2.weight | N | 128 | Min:0.511 Max:1.794 | 0.01 | 0.0001 |
| student.backbone.layer2.1.bn2.bias | N | 128 | Min:-3.825 Max:1.343 | 0.01 | 0.0001 |
| student.backbone.layer2.1.conv3.weight | Y | 512X128X1X1 | Min:-0.344 Max:0.336 | 0.01 | 0.0001 |
| student.backbone.layer2.1.bn3.weight | N | 512 | Min:-0.072 Max:2.122 | 0.01 | 0.0001 |
| student.backbone.layer2.1.bn3.bias | N | 512 | Min:-1.502 Max:1.166 | 0.01 | 0.0001 |
| student.backbone.layer2.2.conv1.weight | Y | 128X512X1X1 | Min:-0.330 Max:0.369 | 0.01 | 0.0001 |
| student.backbone.layer2.2.bn1.weight | N | 128 | Min:0.406 Max:1.696 | 0.01 | 0.0001 |
| student.backbone.layer2.2.bn1.bias | N | 128 | Min:-2.696 Max:1.944 | 0.01 | 0.0001 |
| student.backbone.layer2.2.conv2.weight | Y | 128X128X3X3 | Min:-0.326 Max:0.374 | 0.01 | 0.0001 |
| student.backbone.layer2.2.bn2.weight | N | 128 | Min:0.460 Max:2.179 | 0.01 | 0.0001 |
| student.backbone.layer2.2.bn2.bias | N | 128 | Min:-1.587 Max:0.589 | 0.01 | 0.0001 |
| student.backbone.layer2.2.conv3.weight | Y | 512X128X1X1 | Min:-0.288 Max:0.232 | 0.01 | 0.0001 |
| student.backbone.layer2.2.bn3.weight | N | 512 | Min:-0.006 Max:3.043 | 0.01 | 0.0001 |
| student.backbone.layer2.2.bn3.bias | N | 512 | Min:-2.369 Max:0.440 | 0.01 | 0.0001 |
| student.backbone.layer2.3.conv1.weight | Y | 128X512X1X1 | Min:-0.298 Max:0.346 | 0.01 | 0.0001 |
| student.backbone.layer2.3.bn1.weight | N | 128 | Min:0.736 Max:2.394 | 0.01 | 0.0001 |
| student.backbone.layer2.3.bn1.bias | N | 128 | Min:-2.643 Max:0.756 | 0.01 | 0.0001 |
| student.backbone.layer2.3.conv2.weight | Y | 128X128X3X3 | Min:-0.272 Max:0.208 | 0.01 | 0.0001 |
| student.backbone.layer2.3.bn2.weight | N | 128 | Min:0.682 Max:1.694 | 0.01 | 0.0001 |
| student.backbone.layer2.3.bn2.bias | N | 128 | Min:-1.365 Max:1.599 | 0.01 | 0.0001 |
| student.backbone.layer2.3.conv3.weight | Y | 512X128X1X1 | Min:-0.279 Max:0.281 | 0.01 | 0.0001 |
| student.backbone.layer2.3.bn3.weight | N | 512 | Min:-0.009 Max:1.721 | 0.01 | 0.0001 |
| student.backbone.layer2.3.bn3.bias | N | 512 | Min:-1.897 Max:1.182 | 0.01 | 0.0001 |
| student.backbone.layer3.0.conv1.weight | Y | 256X512X1X1 | Min:-0.230 Max:0.341 | 0.01 | 0.0001 |
| student.backbone.layer3.0.bn1.weight | N | 256 | Min:0.621 Max:1.636 | 0.01 | 0.0001 |
| student.backbone.layer3.0.bn1.bias | N | 256 | Min:-1.420 Max:0.917 | 0.01 | 0.0001 |
| student.backbone.layer3.0.conv2.weight | Y | 256X256X3X3 | Min:-0.267 Max:0.179 | 0.01 | 0.0001 |
| student.backbone.layer3.0.bn2.weight | N | 256 | Min:0.585 Max:1.749 | 0.01 | 0.0001 |
| student.backbone.layer3.0.bn2.bias | N | 256 | Min:-1.837 Max:1.398 | 0.01 | 0.0001 |
| student.backbone.layer3.0.conv3.weight | Y | 1024X256X1X1 | Min:-0.333 Max:0.384 | 0.01 | 0.0001 |
| student.backbone.layer3.0.bn3.weight | N | 1024 | Min:0.071 Max:2.367 | 0.01 | 0.0001 |
| student.backbone.layer3.0.bn3.bias | N | 1024 | Min:-0.938 Max:0.887 | 0.01 | 0.0001 |
| student.backbone.layer3.0.downsample.0.weight | Y | 1024X512X1X1 | Min:-0.333 Max:0.421 | 0.01 | 0.0001 |
| student.backbone.layer3.0.downsample.1.weight | N | 1024 | Min:0.034 Max:2.779 | 0.01 | 0.0001 |
| student.backbone.layer3.0.downsample.1.bias | N | 1024 | Min:-0.938 Max:0.887 | 0.01 | 0.0001 |
| student.backbone.layer3.1.conv1.weight | Y | 256X1024X1X1 | Min:-0.197 Max:0.236 | 0.01 | 0.0001 |
| student.backbone.layer3.1.bn1.weight | N | 256 | Min:0.566 Max:1.743 | 0.01 | 0.0001 |
| student.backbone.layer3.1.bn1.bias | N | 256 | Min:-2.703 Max:1.042 | 0.01 | 0.0001 |
| student.backbone.layer3.1.conv2.weight | Y | 256X256X3X3 | Min:-0.436 Max:0.196 | 0.01 | 0.0001 |
| student.backbone.layer3.1.bn2.weight | N | 256 | Min:0.515 Max:2.301 | 0.01 | 0.0001 |
| student.backbone.layer3.1.bn2.bias | N | 256 | Min:-2.548 Max:1.856 | 0.01 | 0.0001 |
| student.backbone.layer3.1.conv3.weight | Y | 1024X256X1X1 | Min:-0.438 Max:0.295 | 0.01 | 0.0001 |
| student.backbone.layer3.1.bn3.weight | N | 1024 | Min:0.055 Max:1.943 | 0.01 | 0.0001 |
| student.backbone.layer3.1.bn3.bias | N | 1024 | Min:-1.647 Max:1.016 | 0.01 | 0.0001 |
| student.backbone.layer3.2.conv1.weight | Y | 256X1024X1X1 | Min:-0.387 Max:0.337 | 0.01 | 0.0001 |
| student.backbone.layer3.2.bn1.weight | N | 256 | Min:0.463 Max:1.886 | 0.01 | 0.0001 |
| student.backbone.layer3.2.bn1.bias | N | 256 | Min:-2.399 Max:0.488 | 0.01 | 0.0001 |
| student.backbone.layer3.2.conv2.weight | Y | 256X256X3X3 | Min:-0.165 Max:0.258 | 0.01 | 0.0001 |
| student.backbone.layer3.2.bn2.weight | N | 256 | Min:0.555 Max:1.901 | 0.01 | 0.0001 |
| student.backbone.layer3.2.bn2.bias | N | 256 | Min:-1.655 Max:0.704 | 0.01 | 0.0001 |
| student.backbone.layer3.2.conv3.weight | Y | 1024X256X1X1 | Min:-0.290 Max:0.261 | 0.01 | 0.0001 |
| student.backbone.layer3.2.bn3.weight | N | 1024 | Min:0.049 Max:1.450 | 0.01 | 0.0001 |
| student.backbone.layer3.2.bn3.bias | N | 1024 | Min:-1.201 Max:0.587 | 0.01 | 0.0001 |
| student.backbone.layer3.3.conv1.weight | Y | 256X1024X1X1 | Min:-0.194 Max:0.295 | 0.01 | 0.0001 |
| student.backbone.layer3.3.bn1.weight | N | 256 | Min:0.442 Max:1.353 | 0.01 | 0.0001 |
| student.backbone.layer3.3.bn1.bias | N | 256 | Min:-2.322 Max:0.509 | 0.01 | 0.0001 |
| student.backbone.layer3.3.conv2.weight | Y | 256X256X3X3 | Min:-0.201 Max:0.176 | 0.01 | 0.0001 |
| student.backbone.layer3.3.bn2.weight | N | 256 | Min:0.529 Max:1.939 | 0.01 | 0.0001 |
| student.backbone.layer3.3.bn2.bias | N | 256 | Min:-1.610 Max:0.776 | 0.01 | 0.0001 |
| student.backbone.layer3.3.conv3.weight | Y | 1024X256X1X1 | Min:-0.205 Max:0.239 | 0.01 | 0.0001 |
| student.backbone.layer3.3.bn3.weight | N | 1024 | Min:-0.037 Max:1.646 | 0.01 | 0.0001 |
| student.backbone.layer3.3.bn3.bias | N | 1024 | Min:-1.484 Max:0.344 | 0.01 | 0.0001 |
| student.backbone.layer3.4.conv1.weight | Y | 256X1024X1X1 | Min:-0.226 Max:0.306 | 0.01 | 0.0001 |
| student.backbone.layer3.4.bn1.weight | N | 256 | Min:0.438 Max:1.446 | 0.01 | 0.0001 |
| student.backbone.layer3.4.bn1.bias | N | 256 | Min:-2.511 Max:0.557 | 0.01 | 0.0001 |
| student.backbone.layer3.4.conv2.weight | Y | 256X256X3X3 | Min:-0.147 Max:0.223 | 0.01 | 0.0001 |
| student.backbone.layer3.4.bn2.weight | N | 256 | Min:0.651 Max:1.858 | 0.01 | 0.0001 |
| student.backbone.layer3.4.bn2.bias | N | 256 | Min:-1.588 Max:0.661 | 0.01 | 0.0001 |
| student.backbone.layer3.4.conv3.weight | Y | 1024X256X1X1 | Min:-0.178 Max:0.265 | 0.01 | 0.0001 |
| student.backbone.layer3.4.bn3.weight | N | 1024 | Min:-0.001 Max:1.501 | 0.01 | 0.0001 |
| student.backbone.layer3.4.bn3.bias | N | 1024 | Min:-1.108 Max:0.639 | 0.01 | 0.0001 |
| student.backbone.layer3.5.conv1.weight | Y | 256X1024X1X1 | Min:-0.153 Max:0.330 | 0.01 | 0.0001 |
| student.backbone.layer3.5.bn1.weight | N | 256 | Min:0.425 Max:1.547 | 0.01 | 0.0001 |
| student.backbone.layer3.5.bn1.bias | N | 256 | Min:-1.972 Max:0.823 | 0.01 | 0.0001 |
| student.backbone.layer3.5.conv2.weight | Y | 256X256X3X3 | Min:-0.293 Max:0.276 | 0.01 | 0.0001 |
| student.backbone.layer3.5.bn2.weight | N | 256 | Min:0.650 Max:2.942 | 0.01 | 0.0001 |
| student.backbone.layer3.5.bn2.bias | N | 256 | Min:-1.093 Max:0.771 | 0.01 | 0.0001 |
| student.backbone.layer3.5.conv3.weight | Y | 1024X256X1X1 | Min:-0.232 Max:0.294 | 0.01 | 0.0001 |
| student.backbone.layer3.5.bn3.weight | N | 1024 | Min:0.004 Max:1.984 | 0.01 | 0.0001 |
| student.backbone.layer3.5.bn3.bias | N | 1024 | Min:-1.636 Max:1.250 | 0.01 | 0.0001 |
| student.backbone.layer4.0.conv1.weight | Y | 512X1024X1X1 | Min:-0.184 Max:0.331 | 0.01 | 0.0001 |
| student.backbone.layer4.0.bn1.weight | N | 512 | Min:0.535 Max:1.594 | 0.01 | 0.0001 |
| student.backbone.layer4.0.bn1.bias | N | 512 | Min:-1.756 Max:0.288 | 0.01 | 0.0001 |
| student.backbone.layer4.0.conv2.weight | Y | 512X512X3X3 | Min:-0.175 Max:0.272 | 0.01 | 0.0001 |
| student.backbone.layer4.0.bn2.weight | N | 512 | Min:0.456 Max:1.542 | 0.01 | 0.0001 |
| student.backbone.layer4.0.bn2.bias | N | 512 | Min:-1.820 Max:0.839 | 0.01 | 0.0001 |
| student.backbone.layer4.0.conv3.weight | Y | 2048X512X1X1 | Min:-0.332 Max:0.432 | 0.01 | 0.0001 |
| student.backbone.layer4.0.bn3.weight | N | 2048 | Min:0.888 Max:3.492 | 0.01 | 0.0001 |
| student.backbone.layer4.0.bn3.bias | N | 2048 | Min:-1.810 Max:0.980 | 0.01 | 0.0001 |
| student.backbone.layer4.0.downsample.0.weight | Y | 2048X1024X1X1 | Min:-0.622 Max:0.465 | 0.01 | 0.0001 |
| student.backbone.layer4.0.downsample.1.weight | N | 2048 | Min:0.261 Max:4.575 | 0.01 | 0.0001 |
| student.backbone.layer4.0.downsample.1.bias | N | 2048 | Min:-1.810 Max:0.980 | 0.01 | 0.0001 |
| student.backbone.layer4.1.conv1.weight | Y | 512X2048X1X1 | Min:-0.316 Max:0.577 | 0.01 | 0.0001 |
| student.backbone.layer4.1.bn1.weight | N | 512 | Min:0.398 Max:1.429 | 0.01 | 0.0001 |
| student.backbone.layer4.1.bn1.bias | N | 512 | Min:-1.380 Max:0.428 | 0.01 | 0.0001 |
| student.backbone.layer4.1.conv2.weight | Y | 512X512X3X3 | Min:-0.217 Max:0.284 | 0.01 | 0.0001 |
| student.backbone.layer4.1.bn2.weight | N | 512 | Min:0.349 Max:1.550 | 0.01 | 0.0001 |
| student.backbone.layer4.1.bn2.bias | N | 512 | Min:-1.867 Max:0.880 | 0.01 | 0.0001 |
| student.backbone.layer4.1.conv3.weight | Y | 2048X512X1X1 | Min:-0.200 Max:0.277 | 0.01 | 0.0001 |
| student.backbone.layer4.1.bn3.weight | N | 2048 | Min:0.574 Max:2.847 | 0.01 | 0.0001 |
| student.backbone.layer4.1.bn3.bias | N | 2048 | Min:-2.638 Max:0.544 | 0.01 | 0.0001 |
| student.backbone.layer4.2.conv1.weight | Y | 512X2048X1X1 | Min:-0.289 Max:0.514 | 0.01 | 0.0001 |
| student.backbone.layer4.2.bn1.weight | N | 512 | Min:0.366 Max:1.249 | 0.01 | 0.0001 |
| student.backbone.layer4.2.bn1.bias | N | 512 | Min:-1.664 Max:0.753 | 0.01 | 0.0001 |
| student.backbone.layer4.2.conv2.weight | Y | 512X512X3X3 | Min:-0.142 Max:0.144 | 0.01 | 0.0001 |
| student.backbone.layer4.2.bn2.weight | N | 512 | Min:0.516 Max:1.335 | 0.01 | 0.0001 |
| student.backbone.layer4.2.bn2.bias | N | 512 | Min:-1.871 Max:1.181 | 0.01 | 0.0001 |
| student.backbone.layer4.2.conv3.weight | Y | 2048X512X1X1 | Min:-0.135 Max:0.300 | 0.01 | 0.0001 |
| student.backbone.layer4.2.bn3.weight | N | 2048 | Min:0.435 Max:3.073 | 0.01 | 0.0001 |
| student.backbone.layer4.2.bn3.bias | N | 2048 | Min:-3.885 Max:-0.249 | 0.01 | 0.0001 |
| student.neck.lateral_convs.0.conv.weight | Y | 256X256X1X1 | Min:-0.108 Max:0.108 | 0.01 | 0.0001 |
| student.neck.lateral_convs.0.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.neck.lateral_convs.1.conv.weight | Y | 256X512X1X1 | Min:-0.088 Max:0.088 | 0.01 | 0.0001 |
| student.neck.lateral_convs.1.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.neck.lateral_convs.2.conv.weight | Y | 256X1024X1X1 | Min:-0.068 Max:0.068 | 0.01 | 0.0001 |
| student.neck.lateral_convs.2.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.neck.lateral_convs.3.conv.weight | Y | 256X2048X1X1 | Min:-0.051 Max:0.051 | 0.01 | 0.0001 |
| student.neck.lateral_convs.3.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.neck.fpn_convs.0.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 |
| student.neck.fpn_convs.0.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.neck.fpn_convs.1.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 |
| student.neck.fpn_convs.1.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.neck.fpn_convs.2.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 |
| student.neck.fpn_convs.2.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.neck.fpn_convs.3.conv.weight | Y | 256X256X3X3 | Min:-0.036 Max:0.036 | 0.01 | 0.0001 |
| student.neck.fpn_convs.3.conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.rpn_head.rpn_conv.weight | Y | 256X256X3X3 | Min:-0.051 Max:0.045 | 0.01 | 0.0001 |
| student.rpn_head.rpn_conv.bias | Y | 256 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.rpn_head.rpn_cls.weight | Y | 3X256X1X1 | Min:-0.037 Max:0.031 | 0.01 | 0.0001 |
| student.rpn_head.rpn_cls.bias | Y | 3 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.rpn_head.rpn_reg.weight | Y | 12X256X1X1 | Min:-0.037 Max:0.030 | 0.01 | 0.0001 |
| student.rpn_head.rpn_reg.bias | Y | 12 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.roi_head.bbox_head.fc_cls.weight | Y | 81X1024 | Min:-0.187 Max:0.190 | 0.01 | 0.0001 |
| student.roi_head.bbox_head.fc_cls.bias | Y | 81 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.roi_head.bbox_head.fc_reg.weight | Y | 320X1024 | Min:-0.185 Max:0.214 | 0.01 | 0.0001 |
| student.roi_head.bbox_head.fc_reg.bias | Y | 320 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.roi_head.bbox_head.shared_fcs.0.weight | Y | 1024X12544 | Min:-0.065 Max:0.064 | 0.01 | 0.0001 |
| student.roi_head.bbox_head.shared_fcs.0.bias | Y | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
| student.roi_head.bbox_head.shared_fcs.1.weight | Y | 1024X1024 | Min:-0.154 Max:0.159 | 0.01 | 0.0001 |
| student.roi_head.bbox_head.shared_fcs.1.bias | Y | 1024 | Min:0.000 Max:0.000 | 0.01 | 0.0001 |
+------------------------------------------------+-----------+---------------+-----------------------+------+--------+
wandb: Currently logged in as: shimengnan (use wandb login --relogin
to force relogin)
wandb: wandb version 0.12.9 is available! To upgrade, please run:
wandb: $ pip install wandb --upgrade
wandb: Tracking run with wandb version 0.10.31
wandb: Syncing run soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k
wandb: ⭐️ View project at https://wandb.ai/shimengnan/pre_release
wandb: 🚀 View run at https://wandb.ai/shimengnan/pre_release/runs/4c0xw02u
wandb: Run data is saved locally in /media/smn/Elements SE/SoftTeacher-main/wandb/run-20211228_015920-4c0xw02u
wandb: Run wandb offline
to turn off syncing.
Traceback (most recent call last):
File "tools/train.py", line 198, in
wandb: Waiting for W&B process to finish, PID 26081
wandb: Program failed with code 1. Press ctrl-c to abort syncing.
wandb:
wandb: Find user logs for this run at: /media/smn/Elements SE/SoftTeacher-main/wandb/run-20211228_015920-4c0xw02u/logs/debug.log
wandb: Find internal logs for this run at: /media/smn/Elements SE/SoftTeacher-main/wandb/run-20211228_015920-4c0xw02u/logs/debug-internal.log
wandb: Synced 6 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)
wandb:
wandb: Synced soft_teacher_faster_rcnn_r50_caffe_fpn_coco_180k: https://wandb.ai/shimengnan/pre_release/runs/4c0xw02u
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 25824) of binary: /home/smn/anaconda3/envs/Soft/bin/python
ERROR:torch.distributed.elastic.agent.server.local_elastic_agent:[default] Worker group failed
INFO:torch.distributed.elastic.agent.server.api:[default] Worker group FAILED. 3/3 attempts left; will restart worker group
INFO:torch.distributed.elastic.agent.server.api:[default] Stopping worker group
INFO:torch.distributed.elastic.agent.server.api:[default] Rendezvous'ing worker group
INFO:torch.distributed.elastic.agent.server.api:[default] Rendezvous complete for workers. Result:
restart_count=1
master_addr=127.0.0.1
master_port=29500
group_rank=0
group_world_size=1
local_ranks=[0]
role_ranks=[0]
global_ranks=[0]
role_world_sizes=[1]
globalworld
Traceback (most recent call last):
File "tools/train.py", line 198, in
请问还有后续吗?我也遇到了类似的问题
when I train the model using"bash tools/dist_train_partially,sh semi 1 10 2", there is a problem. Can you help me? Traceback (most recent call last): File "tools/train.py", line 200, in
main()
File "tools/train.py", line 195, in main
meta=meta,
File "./ssod/apis/train.py", line 206, in train_detector
runner.run(data_loaders, cfg.workflow)
File "/home/myuser/.conda/envs/lj36/lib/python3.6/site-packages/mmcv/runner/iter_based_runner.py", line 133, in run
iter_runner(iter_loaders[i], kwargs)
File "/home/myuser/.conda/envs/lj36/lib/python3.6/site-packages/mmcv/runner/iter_based_runner.py", line 60, in train
outputs = self.model.train_step(data_batch, self.optimizer, kwargs)
File "/home/myuser/.conda/envs/lj36/lib/python3.6/site-packages/mmcv/parallel/distributed.py", line 53, in train_step
output = self.module.train_step(inputs[0], kwargs[0])
File "/home/myuser/lj/mmdetection/mmdet/models/detectors/base.py", line 238, in train_step
losses = self(data)
File "/home/myuser/.conda/envs/lj36/lib/python3.6/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(input, *kwargs)
File "/home/myuser/.conda/envs/lj36/lib/python3.6/site-packages/mmcv/runner/fp16_utils.py", line 128, in new_func
output = old_func(new_args, new_kwargs)
File "/home/myuser/lj/mmdetection/mmdet/models/detectors/base.py", line 172, in forward
return self.forward_train(img, img_metas, kwargs)
File "./ssod/models/soft_teacher.py", line 50, in forward_train
data_groups["unsup_teacher"], data_groups["unsup_student"]
File "./ssod/models/soft_teacher.py", line 73, in foward_unsup_train
else None,
File "./ssod/models/soft_teacher.py", line 357, in extract_teacher_info
rpn_out, img_metas, cfg=proposal_cfg
File "/home/myuser/.conda/envs/lj36/lib/python3.6/site-packages/mmcv/runner/fp16_utils.py", line 214, in new_func
output = old_func(new_args, **new_kwargs)
File "/home/myuser/lj/mmdetection/mmdet/models/dense_heads/base_dense_head.py", line 72, in get_bboxes
assert len(cls_scores) == len(score_factors)
AssertionError