Open sibyl1956 opened 2 years ago
Hey @sibyl1956 :wave:! Thank you so much for reporting the issue/feature request :rotating_light:. Someone from SynapseML Team will be looking to triage this issue soon. We appreciate your patience.
"io.spray" %% "spray-json" % "1.3.5" There may be a problem with your spray-json version, it should be 1.3.5. Please confirm.
Agreeing with @neptune05
is this issue fixed?
i meet the same error, and i don't find the jars of spray-json in .ivy2/jars, how can i fixed?
Agreeing with @neptune05
i meet the same error, and i don't find the jars of spray-json in .ivy2/jars, how can i fixed?
I have same error I think it's because I have other UBER jar bring 1.3.6.
But spray.json.package$.enrichAny
both exist in 1.3.5 and 1.3.6.
My fix is compile spray-json 1.3.5 into one of the my UBER jar or copy it into spark's jars folder.
Or maybe you can try
spark.driver.userClassPathFirst spark.executor.userClassPathFirst
SynapseML version
0.10.1
System information
Describe the problem
Installed the package through: com.microsoft.azure:synapseml_2.12:0.10.1 with the resolver: https://mmlspark.azureedge.net/maven
But got this error message when try to initiate a lightgbm classifier: java.lang.NoSuchMethodError: spray.json.package$.enrichAny(Ljava/lang/Object;)Lspray/json/RichAny;
/databricks/spark/python/pyspark/init.py in wrapper(self, *args, kwargs) 112 raise TypeError("Method %s forces keyword arguments." % func.name) 113 self._input_kwargs = kwargs --> 114 return func(self, kwargs) 115 return wrapper 116
/local_disk0/spark-36f90ef6-a68d-4c36-ba04-d72f939344e4/userFiles-842368d3-9f91-4dec-8c2d-38752346d587/addedFile462316793479631003synapseml_lightgbm_2_12_0_10_1-c15ba.jar/synapse/ml/lightgbm/LightGBMClassifier.py in init(self, java_obj, baggingFraction, baggingFreq, baggingSeed, binSampleCount, boostFromAverage, boostingType, catSmooth, categoricalSlotIndexes, categoricalSlotNames, catl2, chunkSize, dataRandomSeed, defaultListenPort, deterministic, driverListenPort, dropRate, dropSeed, earlyStoppingRound, executionMode, extraSeed, featureFraction, featureFractionByNode, featureFractionSeed, featuresCol, featuresShapCol, fobj, improvementTolerance, initScoreCol, isEnableSparse, isProvideTrainingMetric, isUnbalance, labelCol, lambdaL1, lambdaL2, leafPredictionCol, learningRate, matrixType, maxBin, maxBinByFeature, maxCatThreshold, maxCatToOnehot, maxDeltaStep, maxDepth, maxDrop, metric, microBatchSize, minDataInLeaf, minDataPerBin, minDataPerGroup, minGainToSplit, minSumHessianInLeaf, modelString, monotoneConstraints, monotoneConstraintsMethod, monotonePenalty, negBaggingFraction, numBatches, numIterations, numLeaves, numTasks, numThreads, objective, objectiveSeed, otherRate, parallelism, passThroughArgs, posBaggingFraction, predictDisableShapeCheck, predictionCol, probabilityCol, rawPredictionCol, repartitionByGroupingColumn, seed, skipDrop, slotNames, thresholds, timeout, topK, topRate, uniformDrop, useBarrierExecutionMode, useMissing, useSingleDatasetMode, validationIndicatorCol, verbosity, weightCol, xGBoostDartMode, zeroAsMissing) 387 super(LightGBMClassifier, self).init() 388 if java_obj is None: --> 389 self._java_obj = self._new_java_obj("com.microsoft.azure.synapse.ml.lightgbm.LightGBMClassifier", self.uid) 390 else: 391 self._java_obj = java_obj
/databricks/spark/python/pyspark/ml/wrapper.py in _new_java_obj(java_class, args) 64 java_obj = getattr(java_obj, name) 65 java_args = [_py2java(sc, arg) for arg in args] ---> 66 return java_obj(java_args) 67 68 @staticmethod
/databricks/spark/python/lib/py4j-0.10.9.1-src.zip/py4j/java_gateway.py in call(self, *args) 1566 1567 answer = self._gateway_client.send_command(command) -> 1568 return_value = get_return_value( 1569 answer, self._gateway_client, None, self._fqn) 1570
/databricks/spark/python/pyspark/sql/utils.py in deco(*a, kw) 115 def deco(*a, *kw): 116 try: --> 117 return f(a, kw) 118 except py4j.protocol.Py4JJavaError as e: 119 converted = convert_exception(e.java_exception)
/databricks/spark/python/lib/py4j-0.10.9.1-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name) 324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client) 325 if answer[1] == REFERENCE_TYPE: --> 326 raise Py4JJavaError( 327 "An error occurred while calling {0}{1}{2}.\n". 328 format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling None.com.microsoft.azure.synapse.ml.lightgbm.LightGBMClassifier. : java.lang.NoSuchMethodError: spray.json.package$.enrichAny(Ljava/lang/Object;)Lspray/json/RichAny; at com.microsoft.azure.synapse.ml.logging.BasicLogging.logBase(BasicLogging.scala:30) at com.microsoft.azure.synapse.ml.logging.BasicLogging.logBase$(BasicLogging.scala:29) at com.microsoft.azure.synapse.ml.lightgbm.LightGBMClassifier.logBase(LightGBMClassifier.scala:27) at com.microsoft.azure.synapse.ml.logging.BasicLogging.logClass(BasicLogging.scala:40) at com.microsoft.azure.synapse.ml.logging.BasicLogging.logClass$(BasicLogging.scala:39) at com.microsoft.azure.synapse.ml.lightgbm.LightGBMClassifier.logClass(LightGBMClassifier.scala:27) at com.microsoft.azure.synapse.ml.lightgbm.LightGBMClassifier.(LightGBMClassifier.scala:30)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
at py4j.Gateway.invoke(Gateway.java:250)
at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
at py4j.GatewayConnection.run(GatewayConnection.java:251)
at java.lang.Thread.run(Thread.java:748)
Code to reproduce issue
lgbmClassifier = (LightGBMClassifier() .setFeaturesCol("features") .setRawPredictionCol("rawPrediction") .setDefaultListenPort(12402) .setNumLeaves(5) .setNumIterations(10) .setObjective("binary") .setLabelCol("labels") .setLeafPredictionCol("leafPrediction") .setFeaturesShapCol("featuresShap"))
Other info / logs
No response
What component(s) does this bug affect?
area/cognitive
: Cognitive projectarea/core
: Core projectarea/deep-learning
: DeepLearning projectarea/lightgbm
: Lightgbm projectarea/opencv
: Opencv projectarea/vw
: VW projectarea/website
: Websitearea/build
: Project build systemarea/notebooks
: Samples under notebooks folderarea/docker
: Docker usagearea/models
: models related issueWhat language(s) does this bug affect?
language/scala
: Scala source codelanguage/python
: Pyspark APIslanguage/r
: R APIslanguage/csharp
: .NET APIslanguage/new
: Proposals for new client languagesWhat integration(s) does this bug affect?
integrations/synapse
: Azure Synapse integrationsintegrations/azureml
: Azure ML integrationsintegrations/databricks
: Databricks integrations