Open perrymacmurray opened 3 years ago
@Bossach
Thanks for your share! I follow your step and it almost successful. However, the clinfo told me that "unknown target CPU 'sm_89'". Here is my full output and full benchmark.
clinfo:
Number of platforms 1
Platform Name Portable Computing Language
Platform Vendor The pocl project
Platform Version OpenCL 3.0 PoCL 5.0 Linux, RelWithDebInfo, RELOC, SPIR, LLVM 14.0.0, SLEEF, CUDA, POCL_DEBUG
Platform Profile FULL_PROFILE
Platform Extensions cl_khr_icd cl_pocl_content_size
Platform Extensions with Version cl_khr_icd 0x400000 (1.0.0)
cl_pocl_content_size 0x400000 (1.0.0)
Platform Numeric Version 0xc00000 (3.0.0)
Platform Extensions function suffix POCL
Platform Host timer resolution 0ns
Platform Name Portable Computing Language
Number of devices 1
Device Name NVIDIA GeForce RTX 4090
Device Vendor NVIDIA Corporation
Device Vendor ID 0x10de
Device Version OpenCL 3.0 PoCL HSTR: CUDA-sm_89
Device Numeric Version 0xc00000 (3.0.0)
Driver Version 5.0
Device OpenCL C Version OpenCL C 1.2 PoCL
Device OpenCL C all versions OpenCL C 0x400000 (1.0.0)
OpenCL C 0x401000 (1.1.0)
OpenCL C 0x402000 (1.2.0)
OpenCL C 0xc00000 (3.0.0)
Device OpenCL C features __opencl_c_images 0xc00000 (3.0.0)
__opencl_c_atomic_order_acq_rel 0xc00000 (3.0.0)
__opencl_c_atomic_order_seq_cst 0xc00000 (3.0.0)
__opencl_c_atomic_scope_device 0xc00000 (3.0.0)
__opencl_c_program_scope_global_variables 0xc00000 (3.0.0)
__opencl_c_generic_address_space 0xc00000 (3.0.0)
__opencl_c_fp16 0xc00000 (3.0.0)
__opencl_c_fp64 0xc00000 (3.0.0)
Latest comfornace test passed (n/a)
Device Type GPU
Device Topology (NV) PCI-E, 0000:01:00.0
Device Profile FULL_PROFILE
Device Available Yes
Compiler Available Yes
Linker Available Yes
Max compute units 128
Max clock frequency 2595MHz
Compute Capability (NV) 8.9
Device Partition (core)
Max number of sub-devices 1
Supported partition types None
Supported affinity domains (n/a)
Max work item dimensions 3
Max work item sizes 1024x1024x64
Max work group size 1024
Preferred work group size multiple (device) 32
=== CL_PROGRAM_BUILD_LOG ===
error: unknown target CPU 'sm_89'
Device NVIDIA GeForce RTX 4090 failed to build the program
Preferred work group size multiple (kernel) <getWGsizes:1504: create kernel : error -45>
Warp size (NV) 32
Max sub-groups per work group 32
Preferred / native vector sizes
char 1 / 1
short 1 / 1
int 1 / 1
long 1 / 1
half 0 / 0 (cl_khr_fp16)
float 1 / 1
double 1 / 1 (cl_khr_fp64)
Half-precision Floating-point support (cl_khr_fp16)
Denormals No
Infinity and NANs No
Round to nearest No
Round to zero No
Round to infinity No
IEEE754-2008 fused multiply-add No
Support is emulated in software No
Single-precision Floating-point support (core)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Correctly-rounded divide and sqrt operations No
Double-precision Floating-point support (cl_khr_fp64)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Address bits 64, Little-Endian
Global memory size 25756696576 (23.99GiB)
Error Correction support No
Max memory allocation 6439174144 (5.997GiB)
Unified memory for Host and Device No
Integrated memory (NV) No
Shared Virtual Memory (SVM) capabilities (core)
Coarse-grained buffer sharing Yes
Fine-grained buffer sharing Yes
Fine-grained system sharing No
Atomics No
Minimum alignment for any data type 128 bytes
Alignment of base address 4096 bits (512 bytes)
Preferred alignment for atomics
SVM 64 bytes
Global 64 bytes
Local 64 bytes
Atomic memory capabilities relaxed, work-group scope
Atomic fence capabilities relaxed, acquire/release, work-group scope
Max size for global variable 0
Preferred total size of global vars 0
Global Memory cache type None
Image support No
Pipe support No
Max number of pipe args 0
Max active pipe reservations 0
Max pipe packet size 0
Local memory type Local
Local memory size 49152 (48KiB)
Registers per block (NV) 65536
Max number of constant args 8
Max constant buffer size 65536 (64KiB)
Generic address space support Yes
Max size of kernel argument 4352 (4.25KiB)
Queue properties (on host)
Out-of-order execution No
Profiling Yes
Device enqueue capabilities (n/a)
Queue properties (on device)
Out-of-order execution No
Profiling No
Preferred size 0
Max size 0
Max queues on device 0
Max events on device 0
Prefer user sync for interop Yes
Profiling timer resolution 1ns
Execution capabilities
Run OpenCL kernels Yes
Run native kernels No
Non-uniform work-groups No
Work-group collective functions No
Sub-group independent forward progress Yes
Kernel execution timeout (NV) Yes
Concurrent copy and kernel execution (NV) Yes
Number of async copy engines 1
IL version (n/a)
ILs with version (n/a)
SPIR versions (n/a)
printf() buffer size 16777216 (16MiB)
Built-in kernels pocl.mul.i32;pocl.add.i32;pocl.dnn.conv2d_int8_relu;pocl.sgemm.local.f32;pocl.sgemm.tensor.f16f16f32;pocl.sgemm_ab.tensor.f16f16f32;pocl.abs.f32;pocl.add.i8;org.khronos.openvx.scale_image.nn.u8;org.khronos.openvx.scale_image.bl.u8;org.khronos.openvx.tensor_convert_depth.wrap.u8.f32
Built-in kernels with version pocl.mul.i32 0x402000 (1.2.0)
pocl.add.i32 0x402000 (1.2.0)
pocl.dnn.conv2d_int8_relu 0x402000 (1.2.0)
pocl.sgemm.local.f32 0x402000 (1.2.0)
pocl.sgemm.tensor.f16f16f32 0x402000 (1.2.0)
pocl.sgemm_ab.tensor.f16f16f32 0x402000 (1.2.0)
pocl.abs.f32 0x402000 (1.2.0)
pocl.add.i8 0x402000 (1.2.0)
org.khronos.openvx.scale_image.nn.u8 0x402000 (1.2.0)
org.khronos.openvx.scale_image.bl.u8 0x402000 (1.2.0)
org.khronos.openvx.tensor_convert_depth.wrap.u8.f32 0x402000 (1.2.0)
Device Extensions cl_khr_byte_addressable_store cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_int64_base_atomics cl_khr_int64_extended_atomics cl_nv_device_attribute_query cl_khr_spir cl_khr_fp16 cl_khr_fp64
Device Extensions with Version cl_khr_byte_addressable_store 0x400000 (1.0.0)
cl_khr_global_int32_base_atomics 0x400000 (1.0.0)
cl_khr_global_int32_extended_atomics 0x400000 (1.0.0)
cl_khr_local_int32_base_atomics 0x400000 (1.0.0)
cl_khr_local_int32_extended_atomics 0x400000 (1.0.0)
cl_khr_int64_base_atomics 0x400000 (1.0.0)
cl_khr_int64_extended_atomics 0x400000 (1.0.0)
cl_nv_device_attribute_query 0x400000 (1.0.0)
cl_khr_spir 0x801000 (2.1.0)
cl_khr_fp16 0x400000 (1.0.0)
cl_khr_fp64 0x400000 (1.0.0)
NULL platform behavior
clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...) No platform
clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...) No platform
clCreateContext(NULL, ...) [default] No platform
clCreateContext(NULL, ...) [other] Success [POCL]
clCreateContextFromType(NULL, CL_DEVICE_TYPE_DEFAULT) Success (1)
Platform Name Portable Computing Language
Device Name NVIDIA GeForce RTX 4090
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CPU) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU) Success (1)
Platform Name Portable Computing Language
Device Name NVIDIA GeForce RTX 4090
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ACCELERATOR) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CUSTOM) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ALL) Success (1)
Platform Name Portable Computing Language
Device Name NVIDIA GeForce RTX 4090
benchmark:
.-----------------------------------------------------------------------------.
| ______________ ______________ |
| \ ________ | | ________ / |
| \ \ | | | | / / |
| \ \ | | | | / / |
| \ \ | | | | / / |
| \ \_.-" | | "-._/ / |
| \ _.-" _ "-._ / |
| \.-" _.-" "-._ "-./ |
| .-" .-"-. "-. |
| \ v" "v / |
| \ \ / / |
| \ \ / / |
| \ \ / / |
| \ ' / |
| \ / |
| \ / FluidX3D Version 2.13 |
| ' Copyright (c) Dr. Moritz Lehmann |
|-----------------------------------------------------------------------------|
|----------------.------------------------------------------------------------|
| Device ID 0 | NVIDIA GeForce RTX 4090 |
|----------------'------------------------------------------------------------|
|----------------.------------------------------------------------------------|
| Device ID | 0 |
| Device Name | NVIDIA GeForce RTX 4090 |
| Device Vendor | NVIDIA Corporation |
| Device Driver | 5.0 (Linux) |
| OpenCL Version | OpenCL C 1.2 PoCL |
| Compute Units | 128 at 2595 MHz (16384 cores, 85.033 TFLOPs/s) |
| Memory, Cache | 24563 MB, 0 KB global / 48 KB local |
| Buffer Limits | 6140 MB global, 64 KB constant |
|----------------'------------------------------------------------------------|
| Warning: error: unknown target CPU 'sm_89' Device NVIDIA GeForce RTX 4090 |
| failed to build the program |
| Error: OpenCL C code compilation failed with error code -11. Make sure |
| there are no errors in kernel.cpp. |
'-----------------------------------------------------------------------------'
@Tongzhao9417
Your LLVM doesn't know how to compile for your GPU
You can check supported ones by
$ clang --target=nvptx -print-supported-cpus
where --target=nvptx(nvptx64)
stands for "nvidia architecture" and supported cpus
are specific GPUs
Output:
Debian clang version 14.0.6
Target: nvptx
Thread model: posix
InstalledDir: /usr/bin
Available CPUs for this target:
sm_20
sm_21
sm_30
sm_32
sm_35
sm_37
sm_50
sm_52
sm_53
sm_60
sm_61
sm_62
sm_70
sm_72
sm_75
sm_80
sm_86
Use -mcpu or -mtune to specify the target's processor.
For example, clang --target=aarch64-unknown-linux-gui -mcpu=cortex-a35
You need newer version of LLVM/clang. (Just checked llvm-16 from debian repo have "sm_89" one)
So $ sudo apt install llvm-16 clang-16
should fix your problem. Or most actual ones avalible on llvm.org repo
And you have to clean rebuild PoCL with option -DWITH_LLVM_CONFIG=/usr/bin/llvm-config-16 (or your actual llvm-config path)
in order to bond PoCL with correct LLVM version.
@Tongzhao9417 Your LLVM doesn't know how to compile for your GPU You can check supported ones by
$ clang --target=nvptx -print-supported-cpus
where--target=nvptx(nvptx64)
stands for "nvidia architecture" andsupported cpus
are specific GPUs Output:Debian clang version 14.0.6 Target: nvptx Thread model: posix InstalledDir: /usr/bin Available CPUs for this target: sm_20 sm_21 sm_30 sm_32 sm_35 sm_37 sm_50 sm_52 sm_53 sm_60 sm_61 sm_62 sm_70 sm_72 sm_75 sm_80 sm_86 Use -mcpu or -mtune to specify the target's processor. For example, clang --target=aarch64-unknown-linux-gui -mcpu=cortex-a35
You need newer version of LLVM/clang. (Just checked llvm-16 from debian repo have "sm_89" one) So
$ sudo apt install llvm-16 clang-16
should fix your problem. Or most actual ones avalible on llvm.org repo And you have to clean rebuild PoCL with option-DWITH_LLVM_CONFIG=/usr/bin/llvm-config-16 (or your actual llvm-config path)
in order to bond PoCL with correct LLVM version.
Sorry for late reply. I follow your step and it's worked for me.
Cheers!
I compiled POCL as decribed above and now clinfo
works. But when I try to run an OpenCL application I am getting an error:
Build option -cl-std specified OpenCL C version 2.0,but device NVIDIA GeForce GTX 1080 Ti doesn't support that OpenCL C version
Does POCL not support OpenCL 2.0 ?
Absolute king. pocl-opencl-icd was the missing link for me. Ty, sir.
@Bossach
I really appreciate for your brilliant solution!
I want to ask one question to you and everyone who reacted to Bossach's comment and/or tried the solution (@husmen @joaomamede @Tongzhao9417 @olympichek @htao7 @kirse @kon332k): have you tried the PoCL verification tests for NIVIDIA GPU ../tools/scripts/run_cuda_tests
as documented in NVIDIA GPU support — Portable Computing Language (PoCL) 6.0 documentation and have all of the test successfully passed?
I basically followed Bossach's steps to install PoCL and now have clinfo
and clinfo -l
functioning like a charm. However, I found four tests failed when I ran the PoCL verification test as shown below:
cd ~/pocl-6.0/build # move to my `build` directory
../tools/scripts/run_cuda_tests
# For rerunning the failed tests:
../tools/scripts/run_cuda_tests --rerun-failed --output-on-failure
Failed tests were:
The following tests FAILED:
4 - kernel/test_as_type_loopvec (Failed)
166 - regression/clSetKernelArg_overwriting_the_previous_kernel's_args_loopvec (Failed)
208 - runtime/test_device_address (SEGFAULT)
209 - runtime/test_svm (SEGFAULT)
Errors while running CTest
If anybody has conducted the verification test, could you please tell us whether you pass all tests or which tests you miss? It would be also very helpful if you could tell us about the runtime environment and settings, and configurations for PoCL installation.
I opend an issue on PoCL's repo ../tools/scripts/run_cuda_tests
Fails on WSL2 · Issue #1533 · pocl/pocl. Comments on there are also appreciated, and such comments would be helpful for the developers of PoCL to know success/failure of the tests on WSL2 is reproducible and to enhance the PoCL.
Hi,
I saw the POCL solution and jumped on the occasion to try fixing this issue but it didn't work for me.
After the step with cmake --build CMakeCache.txt CTestCustom.cmake cl_offline_compiler.sh config.h kernellib_hash.h pocl_opencl.h CMakeFiles CTestTestfile.cmake cmake_install.cmake config2.h lib pocl_version.h CPackConfig.cmake Makefile compile_commands.json examples pocl.pc poclu CPackSourceConfig.cmake bin compile_test_. include pocl_build_timestamp.h tests
Result of clinfo:
Number of platforms 2
And it is too long to paste here but it sees two intel graphics platforms instead of one intel and one nvidia
Result of nvidia-smi ` +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 565.51.01 Driver Version: 565.90 CUDA Version: 12.7 | |-----------------------------------------+------------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 3050 ... On | 00000000:01:00.0 Off | N/A | | N/A 73C P0 52W / 75W | 1453MiB / 4096MiB | 59% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | No running processes found | +-----------------------------------------------------------------------------------------+ ` Any clues why ?
Windows Build Number
21382.1
WSL Version
Kernel Version
5.10.16.3
Distro Version
Ubuntu 20.04
Other Software
Inside WSL: clinfo (for checking OpenCL platforms) CUDA 11.3 (docker container runs with NVIDIA_DISABLE_REQUIRE=1, as it otherwise thinks it's running 11.0) Docker 20.10.6, build 370c289 (with custom container) nvidia-docker2 2.5.0-1
On Windows: NVIDIA Graphics Driver for CUDA on WSL 470.14
Repro Steps
I installed the Nvidia drivers and docker as according to Nvidia's user guide I am however running an older version of nvidia-docker2 (and dependencies) as according to a forum post here
Additionally, I have also installed the CUDA on WSL driver here
Steps: Run clinfo (both in and outside of the Docker container)
Expected Behavior
clinfo should return the graphics card (in my case, GTX 970) as an OpenCL platform
Actual Behavior
clinfo reports 0 platforms available, both inside the container and just on WSL
Diagnostic Logs
cuda nvidia-container-cli glxinfo (from inside of container) glxinfo (from WSL, outside of container) wsl.etl