microsoft / graphrag

A modular graph-based Retrieval-Augmented Generation (RAG) system
https://microsoft.github.io/graphrag/
MIT License
19.24k stars 1.9k forks source link

[Issue]: <title> Error: Model 'nomic_embed_text' Not Found During Local Embedding (--method local ) in GraphRAG Query #1234

Closed dipakmeher closed 1 month ago

dipakmeher commented 1 month ago

Do you need to file an issue?

Describe the issue

Issue: When running a local query in GraphRAG, I got an error related to the nomic_embed_text model. The error message indicates that the model is not found, even though it appears in the list of available models. Here are the details:

python -m graphrag.query --root ./ragtest --method local "Who are the main demons Krishna defeated during his childhood?"

Error embedding chunk {'OpenAIEmbedding': 'Error code: 404 - {"error": {"message": "model 'nomic_embed_text' not found, try pulling it first", "type": "api_error", "param": null, "code": null}}'} ZeroDivisionError: Weights sum to zero, can't be normalized

Steps to reproduce

  1. The nomic_embed_text model is available and listed when I run the command ollama list.

  2. I verified the embedding model API with a curl command, which successfully returned embeddings: curl -X POST http://localhost:11434/v1/embeddings -H "Content-Type: application/json" -d '{"model": "nomic_embed_text", "input": "Test embedding generation with nomic model"}' 3.I've verified that the embedding API is correctly set in settings.yaml embeddings: llm: model: nomic_embed_text api_base: http://localhost:11434/v1

  3. Global queries work fine, and embedding generation is successful in the global method.

GraphRAG Config Used

# Paste your config here

encoding_model: cl100k_base
skip_workflows: []
llm:
        #api_key: ${GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  #model: gpt-4-turbo-preview
  model: mistral
  model_supports_json: true # recommended if this is available for your model.
  #max_tokens: 4000
  # request_timeout: 180.0
  api_base: http://localhost:11434/v1 #https://<instance>.openai.azure.com
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  #max_retries: 1
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  #concurrent_requests: 1 # the number of parallel inflight requests that may be made
  # temperature: 0 # temperature for sampling
  # top_p: 1 # top-p sampling
  # n: 1 # Number of completions to generate

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  # target: required # or all
  # batch_size: 16 # the number of documents to send in a single request
  # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    #model: text-embedding-3-small
    model: nomic_embed_text
    api_base: http://localhost:11434/v1 #https://<instance>.openai.azure.com
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made

chunks:
  size: 1200
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents

input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## strategy: fully override the entity extraction strategy.
  ##   type: one of graph_intelligence, graph_intelligence_json and nltk
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 1

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 1

community_reports:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000
                                                                                           58,12         56%
cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000

global_search:
  # llm_temperature: 0 # temperature for sampling
  # llm_top_p: 1 # top-p sampling
  # llm_n: 1 # Number of completions to generate
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

Logs and screenshots

No response

Additional Information

natoverse commented 1 month ago

Routing this to #657