When you use open source model, for generate prompt by autopromptemplate:
python -m graphrag.prompt_tune --root /path/to/project --domain "environmental news" --method random --limit 10 --max-tokens 2048 --chunk-size 256 --no-entity-types --output /path/to/output
, it leverages an issue cause by tiktoken, BPE tokenizer of Open AI model
Steps to reproduce
When you change settings yaml file , llm argument by something like llama 70 B:
encoding_model: cl100k_base
skip_workflows: []
llm:
api_key: ${GROQ_API_KEY}
type: openai_chat # or azure_openai_chat
model: llama3-70b-8192
model_supports_json: true # recommended if this is available for your model.
max_tokens: 4000
# request_timeout: 180.0
api_base: https://api.groq.com/openai/v1
# api_version: 2024-02-15-preview
Tokenizer error is leverage
GraphRAG Config Used
encoding_model: cl100k_base
skip_workflows: []
llm:
api_key: ${GROQ_API_KEY}
type: openai_chat # or azure_openai_chat
model: llama3-70b-8192
model_supports_json: true # recommended if this is available for your model.
max_tokens: 4000
# request_timeout: 180.0
api_base: https://api.groq.com/openai/v1
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
tokens_per_minute: 3000 # set a leaky bucket throttle
requests_per_minute: 2 # set a leaky bucket throttle
max_retries: 1
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
parallelization:
stagger: 0.3
# num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
## parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio
llm:
api_key: ${TOGETHER_API_KEY}
type: openai_embedding # or azure_openai_embedding
model: togethercomputer/m2-bert-80M-8k-retrieval
api_base: https://api.together.xyz/v1
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
tokens_per_minute: 3000 # set a leaky bucket throttle
requests_per_minute: 2 # set a leaky bucket throttle
max_retries: 1
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
batch_size: 16 # the number of documents to send in a single request
batch_max_tokens: 3000 # the maximum number of tokens to send in a single request
# target: required # or optional
chunks:
size: 300
overlap: 100
group_by_columns: [id] # by default, we don't allow chunks to cross documents
input:
type: file # or blob
file_type: text # or csv
base_dir: "input"
file_encoding: utf-8
file_pattern: ".*\\.txt$"
cache:
type: file # or blob
base_dir: "cache"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
storage:
type: file # or blob
base_dir: "output/${timestamp}/artifacts"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
reporting:
type: file # or console, blob
base_dir: "output/${timestamp}/reports"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
entity_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/entity_extraction.txt"
entity_types: [organization,person,geo,event]
max_gleanings: 0
summarize_descriptions:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/summarize_descriptions.txt"
max_length: 500
claim_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
# enabled: true
prompt: "prompts/claim_extraction.txt"
description: "Any claims or facts that could be relevant to information discovery."
max_gleanings: 0
community_report:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/community_report.txt"
max_length: 2000
max_input_length: 8000
cluster_graph:
max_cluster_size: 10
embed_graph:
enabled: false # if true, will generate node2vec embeddings for nodes
# num_walks: 10
# walk_length: 40
# window_size: 2
# iterations: 3
# random_seed: 597832
umap:
enabled: false # if true, will generate UMAP embeddings for nodes
snapshots:
graphml: false
raw_entities: false
top_level_nodes: false
local_search:
# text_unit_prop: 0.5
# community_prop: 0.1
# conversation_history_max_turns: 5
# top_k_mapped_entities: 10
# top_k_relationships: 10
# max_tokens: 12000
global_search:
# max_tokens: 12000
# data_max_tokens: 12000
# map_max_tokens: 1000
# reduce_max_tokens: 2000
# concurrency: 32
Logs and screenshots
To solve i build a little bit adaptive classe , in utils/tokens.py, need to make model input as variable after or adjust it :
#
Copyright (c) 2024 Microsoft Corporation.
Licensed under the MIT License
"""Utilities for working with tokens."""
import tiktoken
from transformers import AutoTokenizer
from huggingface_hub import login
login(token = 'token')
``
class TokenizerWrapper:
def __init__(self, model: str):
self.model = model
if model.startswith("gpt-") or model in ["cl100k_base"]:
self.tokenizer = self._init_tiktoken(model)
else:
self.tokenizer = self._init_huggingface(model)
def _init_tiktoken(self, model: str):
try:
return tiktoken.encoding_for_model(model)
except KeyError:
print(f"Warning: Model {model} not found. Using cl100k_base encoding.")
return tiktoken.get_encoding("cl100k_base")
def _init_huggingface(self, model: str):
return AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-70B-Instruct")
def encode(self, text: str) -> list:
if isinstance(self.tokenizer, tiktoken.Encoding):
return self.tokenizer.encode(text)
else: # HuggingFace tokenizer
return self.tokenizer.encode(text, add_special_tokens=False)
def decode(self, tokens: list) -> str:
if isinstance(self.tokenizer, tiktoken.Encoding):
return self.tokenizer.decode(tokens)
else: # HuggingFace tokenizer
return self.tokenizer.decode(tokens)
def num_tokens_from_string(string: str, model: str) -> int:
"""Return the number of tokens in a text string."""
tokenizer = TokenizerWrapper(model)
return len(tokenizer.encode(string))
def string_from_tokens(tokens: list, model: str) -> str:
"""Return a text string from a list of tokens."""
tokenizer = TokenizerWrapper(model)
return tokenizer.decode(tokens)
Describe the issue
When you use open source model, for generate prompt by autopromptemplate:
python -m graphrag.prompt_tune --root /path/to/project --domain "environmental news" --method random --limit 10 --max-tokens 2048 --chunk-size 256 --no-entity-types --output /path/to/output
, it leverages an issue cause by tiktoken, BPE tokenizer of Open AI modelSteps to reproduce
When you change settings yaml file , llm argument by something like llama 70 B:
Tokenizer error is leverage
GraphRAG Config Used
Logs and screenshots
To solve i build a little bit adaptive classe , in utils/tokens.py, need to make model input as variable after or adjust it :
# Copyright (c) 2024 Microsoft Corporation.
Licensed under the MIT License
"""Utilities for working with tokens."""
Additional Information