Closed shaoqing404 closed 3 months ago
I'm facing the same issue. After indexing, local search is looking for "create_final_covariates" but this does not exist.
same here....
There is a 'claim-extraction:' in 'settings. yaml'. Change the value of 'enabled' to true or remove the comment on this line to generate the file 'creat_final_comvariates.parquet'
As @IdaWoods notes, you can optionally turn on covariates. We leave them off by default because they tend to take quite a bit of prompt tuning. Search should ignore if covariates are missing.
We also have a consolidated issue for non-OpenAI/Azure models here: #657. Often these sorts of errors are a red herring due to some malformed response from the model.
As @IdaWoods notes, you can optionally turn on covariates. We leave them off by default because they tend to take quite a bit of prompt tuning. Search should ignore if covariates are missing.
We also have a consolidated issue for non-OpenAI/Azure models here: #657. Often these sorts of errors are a red herring due to some malformed response from the model.
I think the solution is to improve the documentation for settings.yaml.
claim_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
# enabled: true
prompt: "prompts/claim_extraction.txt"
description: "Any claims or facts that could be relevant to information discovery."
max_gleanings: 0
My interpretation of this code is that claim_extraction is enabled by default. It would be good to clearly specify the defaults for each setting and what to do with each setting.
请注意,您可以选择性地打开协变量。默认情况下,我们将它们关闭,因为它们往往需要相当多的提示调整。如果缺少协变量,则搜索应忽略。 我们还在此处针对非 OpenAI/Azure 模型的合并问题:#657。通常,由于模型的某些畸形响应,这些类型的错误是一条红鲱鱼。
我认为解决方案是改进settings.yaml的文档。
claim_extraction: ## llm: override the global llm settings for this task ## parallelization: override the global parallelization settings for this task ## async_mode: override the global async_mode settings for this task # enabled: true prompt: "prompts/claim_extraction.txt" description: "Any claims or facts that could be relevant to information discovery." max_gleanings: 0
我对此代码的解释是,默认情况下claim_extraction处于启用状态。最好清楚地指定每个设置的默认值以及如何处理每个设置。
请注意,您可以选择性地打开协变量。默认情况下,我们将它们关闭,因为它们往往需要相当多的提示调整。如果缺少协变量,则搜索应忽略。 我们还在此处针对非 OpenAI/Azure 模型的合并问题:#657。通常,由于模型的某些畸形响应,这些类型的错误是一条红鲱鱼。
我认为解决方案是改进settings.yaml的文档。
claim_extraction: ## llm: override the global llm settings for this task ## parallelization: override the global parallelization settings for this task ## async_mode: override the global async_mode settings for this task # enabled: true prompt: "prompts/claim_extraction.txt" description: "Any claims or facts that could be relevant to information discovery." max_gleanings: 0
我对此代码的解释是,默认情况下claim_extraction处于启用状态。最好清楚地指定每个设置的默认值以及如何处理每个设置。
Thanks for your responses. I've observed that opening in a Chinese environment causes the effect to crash, so if using Chinese documentation, it's almost necessary to close it. There are already developers in the Chinese community who are ready to submit Chinese word segmentation to improve this situation. Do you think it should be offered as a suggestion to graphrag developers?
Describe the issue
I'm getting an error when creating a local search using the official use case,it tells me that I can't find this covariate file. 1.The covariates project was not found in the built graph. Can I remove it in the local searcher? 2.How should I reconstruct this covariate in my graph?
Steps to reproduce
just do it, and you can see stats.json: { "total_runtime": 1150.067667722702, "num_documents": 1, "input_load_time": 0, "workflows": { "create_base_text_units": { "overall": 0.20503902435302734, "0_orderby": 0.002000093460083008, "1_zip": 0.0009996891021728516, "2_aggregate_override": 0.0030007362365722656, "3_chunk": 0.16653060913085938, "4_select": 0.0019986629486083984, "5_unroll": 0.0030002593994140625, "6_rename": 0.0019996166229248047, "7_genid": 0.00850677490234375, "8_unzip": 0.0019998550415039062, "9_copy": 0.003000974655151367, "10_filter": 0.010001420974731445 }, "create_base_extracted_entities": { "overall": 782.4712069034576, "0_entity_extract": 782.0635554790497, "1_merge_graphs": 0.40564393997192383 }, "create_summarized_entities": { "overall": 191.44460487365723, "0_summarize_descriptions": 191.44160509109497 }, "create_base_entity_graph": { "overall": 1.6647131443023682, "0_cluster_graph": 1.6567118167877197, "1_select": 0.0040013790130615234 }, "create_final_entities": { "overall": 18.11626625061035, "0_unpack_graph": 0.7127723693847656, "1_rename": 0.003999948501586914, "2_select": 0.005509853363037109, "3_dedupe": 0.004999637603759766, "4_rename": 0.00400090217590332, "5_filter": 0.020002126693725586, "6_text_split": 0.023024320602416992, "7_drop": 0.005999088287353516, "8_merge": 0.1520519256591797, "9_text_embed": 17.15132212638855, "10_drop": 0.0059986114501953125, "11_filter": 0.021512985229492188 }, "create_final_nodes": { "overall": 4.684857368469238, "0_layout_graph": 2.5701215267181396, "1_unpack_graph": 0.9923768043518066, "2_unpack_graph": 0.9953372478485107, "3_filter": 0.04850602149963379, "4_drop": 0.008002042770385742, "5_select": 0.005998134613037109, "6_rename": 0.0070002079010009766, "7_join": 0.015513420104980469, "8_convert": 0.02905893325805664, "9_rename": 0.006943464279174805 }, "create_final_communities": { "overall": 2.9321365356445312, "0_unpack_graph": 0.9077630043029785, "1_unpack_graph": 1.0635173320770264, "2_aggregate_override": 0.008929252624511719, "3_join": 0.03451657295227051, "4_join": 0.03902149200439453, "5_concat": 0.013000726699829102, "6_filter": 0.711329460144043, "7_aggregate_override": 0.03801727294921875, "8_join": 0.011513948440551758, "9_filter": 0.02650737762451172, "10_fill": 0.008999109268188477, "11_merge": 0.03851604461669922, "12_copy": 0.01099538803100586, "13_select": 0.009002447128295898 }, "join_text_units_to_entity_ids": { "overall": 0.05650734901428223, "0_select": 0.009998798370361328, "1_unroll": 0.01150822639465332, "2_aggregate_override": 0.026000499725341797 }, "create_final_relationships": { "overall": 0.990393877029419, "0_unpack_graph": 0.7843437194824219, "1_filter": 0.057015419006347656, "2_rename": 0.01050710678100586, "3_filter": 0.07201361656188965, "4_drop": 0.010999917984008789, "5_compute_edge_combined_degree": 0.013000249862670898, "6_convert": 0.021511316299438477, "7_convert": 0.012001991271972656 }, "join_text_units_to_relationship_ids": { "overall": 0.06950807571411133, "0_select": 0.01100015640258789, "1_unroll": 0.012508153915405273, "2_aggregate_override": 0.021997690200805664, "3_select": 0.013003349304199219 }, "create_final_community_reports": { "overall": 144.23982334136963, "0_prepare_community_reports_nodes": 0.05352377891540527, "1_prepare_community_reports_edges": 0.030506372451782227, "2_restore_community_hierarchy": 0.03902792930603027, "3_prepare_community_reports": 0.9143862724304199, "4_create_community_reports": 143.17837524414062, "5_window": 0.013002157211303711 }, "create_final_text_units": { "overall": 0.09754467010498047, "0_select": 0.012004613876342773, "1_rename": 0.012516975402832031, "2_join": 0.01651144027709961, "3_join": 0.016002178192138672, "4_aggregate_override": 0.014999866485595703, "5_select": 0.013511419296264648 }, "create_base_documents": { "overall": 0.1560194492340088, "0_unroll": 0.02499985694885254, "1_select": 0.01399993896484375, "2_rename": 0.013506650924682617, "3_join": 0.016003847122192383, "4_aggregate_override": 0.014995098114013672, "5_join": 0.01651144027709961, "6_rename": 0.012999534606933594, "7_convert": 0.029500961303710938 }, "create_final_documents": { "overall": 0.03250551223754883, "0_rename": 0.018505573272705078 } } }
GraphRAG Config Used
encoding_model: cl100k_base skip_workflows: [] llm:
api_key: type: openai_chat # or azure_openai_chat model: deepseek-chat model_supports_json: false # recommended if this is available for your model.
max_tokens: 4000
request_timeout: 180.0
api_base: https://api.smnet.asia/v1
api_base: https://api.deepseek.com/v1
api_version: 2024-02-15-preview
organization:
deployment_name:
tokens_per_minute: 150_000 # set a leaky bucket throttle
requests_per_minute: 10_000 # set a leaky bucket throttle
max_retries: 10
max_retry_wait: 10.0
sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
concurrent_requests: 25 # the number of parallel inflight requests that may be made
parallelization: stagger: 0.3
num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio llm: api_key: type: openai_embedding # or azure_openai_embedding model: embedding-2 api_base: https://open.bigmodel.cn/api/paas/v4
api_version: 2024-02-15-preview
max_retry_wait: 10.0
batch_size: 16 # the number of documents to send in a single request
chunks: size: 300 overlap: 100 group_by_columns: [id] # by default, we don't allow chunks to cross documents
input: type: file # or blob file_type: text # or csv base_dir: "input" file_encoding: utf-8 file_pattern: ".*\.txt$"
cache: type: file # or blob base_dir: "cache"
connection_string:
container_name:
storage: type: file # or blob base_dir: "output/${timestamp}/artifacts"
connection_string:
container_name:
reporting: type: file # or console, blob base_dir: "output/${timestamp}/reports"
connection_string:
container_name:
entity_extraction:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/entity_extraction.txt" entity_types: [organization,person,geo,event] max_gleanings: 0
summarize_descriptions:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/summarize_descriptions.txt" max_length: 500
claim_extraction:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
enabled: true
prompt: "prompts/claim_extraction.txt" description: "Any claims or facts that could be relevant to information discovery." max_gleanings: 0
community_report:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/community_report.txt" max_length: 2000 max_input_length: 8000
cluster_graph: max_cluster_size: 10
embed_graph: enabled: false # if true, will generate node2vec embeddings for nodes
num_walks: 10
walk_length: 40
window_size: 2
iterations: 3
random_seed: 597832
umap: enabled: false # if true, will generate UMAP embeddings for nodes
snapshots: graphml: false raw_entities: false top_level_nodes: false
local_search: text_unit_prop: 0.5 community_prop: 0.1 conversation_history_max_turns: 5 top_k_mapped_entities: 10 top_k_relationships: 10 max_tokens: 12000
global_search: max_tokens: 12000 data_max_tokens: 12000 map_max_tokens: 1000 reduce_max_tokens: 2000 concurrency: 32
Logs and screenshots
No response
Additional Information