microsoft / graphrag

A modular graph-based Retrieval-Augmented Generation (RAG) system
https://microsoft.github.io/graphrag/
MIT License
19.16k stars 1.89k forks source link

[Issue]: <title> ZeroDivisionError: Weights sum to zero, can't be normalized #619

Closed prasantpoudel closed 3 months ago

prasantpoudel commented 4 months ago

Describe the issue

When I run the query using local scope I got the error of ZeroDivisionError: Weights sum to zero, can't be normalized. But for the Global scope it worked correctly. If any one have the Idea please give the solution.

python3 -m graphrag.query \
--root ./ragtest \
--method local \
"Who is Scrooge, and what are his main relationships?"

INFO: Reading settings from ragtest/settings.yaml
creating llm client with {'api_key': 'REDACTED,len=19', 'type': "openai_chat", 'model': 'mistral:7b', 'max_tokens': 4000, 'request_timeout': 180.0, 'api_base': 'http://localhost:11434/v1', 'api_version': None, 'organization': None, 'proxy': None, 'cognitive_services_endpoint': None, 'deployment_name': None, 'model_supports_json': True, 'tokens_per_minute': 0, 'requests_per_minute': 0, 'max_retries': 10, 'max_retry_wait': 10.0, 'sleep_on_rate_limit_recommendation': True, 'concurrent_requests': 10}
creating embedding llm client with {'api_key': 'REDACTED,len=19', 'type': "openai_embedding", 'model': 'nomic-embed-text', 'max_tokens': 4000, 'request_timeout': 180.0, 'api_base': 'http://localhost:11434/v1', 'api_version': None, 'organization': None, 'proxy': None, 'cognitive_services_endpoint': None, 'deployment_name': None, 'model_supports_json': None, 'tokens_per_minute': 0, 'requests_per_minute': 0, 'max_retries': 10, 'max_retry_wait': 10.0, 'sleep_on_rate_limit_recommendation': True, 'concurrent_requests': 10}
Error embedding chunk {'OpenAIEmbedding': "Error code: 400 - {'error': {'message': 'invalid input type', 'type': 'api_error', 'param': None, 'code': None}}"}
Traceback (most recent call last):
  File "<frozen runpy>", line 198, in _run_module_as_main
  File "<frozen runpy>", line 88, in _run_code
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/__main__.py", line 75, in <module>
    run_local_search(
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/cli.py", line 154, in run_local_search
    result = search_engine.search(query=query)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/structured_search/local_search/search.py", line 118, in search
    context_text, context_records = self.context_builder.build_context(
                                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/structured_search/local_search/mixed_context.py", line 139, in build_context
    selected_entities = map_query_to_entities(
                        ^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/context_builder/entity_extraction.py", line 55, in map_query_to_entities
    search_results = text_embedding_vectorstore.similarity_search_by_text(
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/vector_stores/lancedb.py", line 118, in similarity_search_by_text
    query_embedding = text_embedder(text)
                      ^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/context_builder/entity_extraction.py", line 57, in <lambda>
    text_embedder=lambda t: text_embedder.embed(t),
                            ^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/llm/oai/embedding.py", line 96, in embed
    chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/numpy/lib/function_base.py", line 550, in average
    raise ZeroDivisionError(
ZeroDivisionError: Weights sum to zero, can't be normalized

Steps to reproduce

No response

GraphRAG Config Used

No response

Logs and screenshots

No response

Additional Information

Nuclear6 commented 4 months ago

It should be that something went wrong in your index phase. You can look at the logs in the index phase.

sebnapi commented 4 months ago

Yes this is due to your locally run embedding model, not returning the weights in a correct format. OpenAI uses internally base64 encoded floats, and most other models will return floats as numbers.

I've hacked the encoding_format into this piece of code to make local search work:

def map_query_to_entities(
    query: str,
    text_embedding_vectorstore: BaseVectorStore,
    text_embedder: BaseTextEmbedding,
    all_entities: list[Entity],
    embedding_vectorstore_key: str = EntityVectorStoreKey.ID,
    include_entity_names: list[str] | None = None,
    exclude_entity_names: list[str] | None = None,
    k: int = 10,
    oversample_scaler: int = 2,
) -> list[Entity]:
    """Extract entities that match a given query using semantic similarity of text embeddings of query and entity descriptions."""
    if include_entity_names is None:
        include_entity_names = []
    if exclude_entity_names is None:
        exclude_entity_names = []
    matched_entities = []
    if query != "":
        # get entities with highest semantic similarity to query
        # oversample to account for excluded entities
        search_results = text_embedding_vectorstore.similarity_search_by_text(
            text=query,
            text_embedder=lambda t: text_embedder.embed(t, encoding_format="float"), # added to make embedding api work, openai uses base64 by default
            k=k * oversample_scaler,
        )
        for result in search_results:
            matched = get_entity_by_key(
                entities=all_entities,
                key=embedding_vectorstore_key,
                value=result.document.id,
            )
            if matched:
                matched_entities.append(matched)
    else:
        all_entities.sort(key=lambda x: x.rank if x.rank else 0, reverse=True)
        matched_entities = all_entities[:k]

    # filter out excluded entities
    if exclude_entity_names:
        matched_entities = [
            entity
            for entity in matched_entities
            if entity.title not in exclude_entity_names
        ]

    # add entities in the include_entity list
    included_entities = []
    for entity_name in include_entity_names:
        included_entities.extend(get_entity_by_name(all_entities, entity_name))
    return included_entities + matched_entities
Anthonyfhd commented 4 months ago

是的,这是由于您本地运行的嵌入模型未以正确的格式返回权重。OpenAI 使用内部 base64 编码的浮点数,而大多数其他模型将以数字形式返回浮点数。

我把 encoding_format 修改成了这段代码,以使本地搜索能够正常工作:

def map_query_to_entities(
    query: str,
    text_embedding_vectorstore: BaseVectorStore,
    text_embedder: BaseTextEmbedding,
    all_entities: list[Entity],
    embedding_vectorstore_key: str = EntityVectorStoreKey.ID,
    include_entity_names: list[str] | None = None,
    exclude_entity_names: list[str] | None = None,
    k: int = 10,
    oversample_scaler: int = 2,
) -> list[Entity]:
    """Extract entities that match a given query using semantic similarity of text embeddings of query and entity descriptions."""
    if include_entity_names is None:
        include_entity_names = []
    if exclude_entity_names is None:
        exclude_entity_names = []
    matched_entities = []
    if query != "":
        # get entities with highest semantic similarity to query
        # oversample to account for excluded entities
        search_results = text_embedding_vectorstore.similarity_search_by_text(
            text=query,
            text_embedder=lambda t: text_embedder.embed(t, encoding_format="float"), # added to make embedding api work, openai uses base64 by default
            k=k * oversample_scaler,
        )
        for result in search_results:
            matched = get_entity_by_key(
                entities=all_entities,
                key=embedding_vectorstore_key,
                value=result.document.id,
            )
            if matched:
                matched_entities.append(matched)
    else:
        all_entities.sort(key=lambda x: x.rank if x.rank else 0, reverse=True)
        matched_entities = all_entities[:k]

    # filter out excluded entities
    if exclude_entity_names:
        matched_entities = [
            entity
            for entity in matched_entities
            if entity.title not in exclude_entity_names
        ]

    # add entities in the include_entity list
    included_entities = []
    for entity_name in include_entity_names:
        included_entities.extend(get_entity_by_name(all_entities, entity_name))
    return included_entities + matched_entities

这好像改了还是不工作

johmyzhang commented 4 months ago

It's because you're using local model. If you are using Ollama (just like me), you might see this answer: https://github.com/microsoft/graphrag/issues/345#issuecomment-2212471697 Works perfectly for me...

natoverse commented 3 months ago

Consolidating alternate model issues here: https://github.com/microsoft/graphrag/issues/657

AymaneHan1 commented 2 months ago

Hello, currently running through the same problem, I am using an azure openai instance

text_embedder = OpenAIEmbedding(
    api_key=api_key,
    deployment_name="ada-small-emb-graphrag",
    model="text-embedding-ada-002",
    api_base="https://xxx-oai.openai.azure.com/",
)

text_embedder.embed("hello world")

This returns the error ZeroDivisionError: Weights sum to zero, can't be normalized I have added the float encoding in teh source code but still do not work

text_embedder=lambda t: text_embedder.embed(t, encoding_format="float") Any ideas why is still not working? Thanks

dantenull commented 1 month ago

I also encountered this situation, but because I did not connect to openai, I checked the api_base and api_key, and there was no problem.

ArwaALyahyai commented 2 weeks ago

Yes this is due to your locally run embedding model, not returning the weights in a correct format. OpenAI uses internally base64 encoded floats, and most other models will return floats as numbers.

I've hacked the encoding_format into this piece of code to make local search work:

def map_query_to_entities( query: str, text_embedding_vectorstore: BaseVectorStore, text_embedder: BaseTextEmbedding, all_entities: list[Entity], embedding_vectorstore_key: str = EntityVectorStoreKey.ID, include_entity_names: list[str] | None = None, exclude_entity_names: list[str] | None = None, k: int = 10, oversample_scaler: int = 2, ) -> list[Entity]: """Extract entities that match a given query using semantic similarity of text embeddings of query and entity descriptions.""" if include_entity_names is None: include_entity_names = [] if exclude_entity_names is None: exclude_entity_names = [] matched_entities = [] if query != "":

get entities with highest semantic similarity to query

    # oversample to account for excluded entities
    search_results = text_embedding_vectorstore.similarity_search_by_text(
        text=query,
        text_embedder=lambda t: text_embedder.embed(t, encoding_format="float"), # added to make embedding api work, openai uses base64 by default
        k=k * oversample_scaler,
    )
    for result in search_results:
        matched = get_entity_by_key(
            entities=all_entities,
            key=embedding_vectorstore_key,
            value=result.document.id,
        )
        if matched:
            matched_entities.append(matched)
else:
    all_entities.sort(key=lambda x: x.rank if x.rank else 0, reverse=True)
    matched_entities = all_entities[:k]

# filter out excluded entities
if exclude_entity_names:
    matched_entities = [
        entity
        for entity in matched_entities
        if entity.title not in exclude_entity_names
    ]

# add entities in the include_entity list
included_entities = []
for entity_name in include_entity_names:
    included_entities.extend(get_entity_by_name(all_entities, entity_name))
return included_entities + matched_entities

where I should place this code?

lawyinking commented 4 days ago

Describe the issue

When I run the query using local scope I got the error of ZeroDivisionError: Weights sum to zero, can't be normalized. But for the Global scope it worked correctly. If any one have the Idea please give the solution.

python3 -m graphrag.query \
--root ./ragtest \
--method local \
"Who is Scrooge, and what are his main relationships?"

INFO: Reading settings from ragtest/settings.yaml
creating llm client with {'api_key': 'REDACTED,len=19', 'type': "openai_chat", 'model': 'mistral:7b', 'max_tokens': 4000, 'request_timeout': 180.0, 'api_base': 'http://localhost:11434/v1', 'api_version': None, 'organization': None, 'proxy': None, 'cognitive_services_endpoint': None, 'deployment_name': None, 'model_supports_json': True, 'tokens_per_minute': 0, 'requests_per_minute': 0, 'max_retries': 10, 'max_retry_wait': 10.0, 'sleep_on_rate_limit_recommendation': True, 'concurrent_requests': 10}
creating embedding llm client with {'api_key': 'REDACTED,len=19', 'type': "openai_embedding", 'model': 'nomic-embed-text', 'max_tokens': 4000, 'request_timeout': 180.0, 'api_base': 'http://localhost:11434/v1', 'api_version': None, 'organization': None, 'proxy': None, 'cognitive_services_endpoint': None, 'deployment_name': None, 'model_supports_json': None, 'tokens_per_minute': 0, 'requests_per_minute': 0, 'max_retries': 10, 'max_retry_wait': 10.0, 'sleep_on_rate_limit_recommendation': True, 'concurrent_requests': 10}
Error embedding chunk {'OpenAIEmbedding': "Error code: 400 - {'error': {'message': 'invalid input type', 'type': 'api_error', 'param': None, 'code': None}}"}
Traceback (most recent call last):
  File "<frozen runpy>", line 198, in _run_module_as_main
  File "<frozen runpy>", line 88, in _run_code
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/__main__.py", line 75, in <module>
    run_local_search(
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/cli.py", line 154, in run_local_search
    result = search_engine.search(query=query)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/structured_search/local_search/search.py", line 118, in search
    context_text, context_records = self.context_builder.build_context(
                                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/structured_search/local_search/mixed_context.py", line 139, in build_context
    selected_entities = map_query_to_entities(
                        ^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/context_builder/entity_extraction.py", line 55, in map_query_to_entities
    search_results = text_embedding_vectorstore.similarity_search_by_text(
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/vector_stores/lancedb.py", line 118, in similarity_search_by_text
    query_embedding = text_embedder(text)
                      ^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/context_builder/entity_extraction.py", line 57, in <lambda>
    text_embedder=lambda t: text_embedder.embed(t),
                            ^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/graphrag/query/llm/oai/embedding.py", line 96, in embed
    chunk_embeddings = np.average(chunk_embeddings, axis=0, weights=chunk_lens)
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packages/numpy/lib/function_base.py", line 550, in average
    raise ZeroDivisionError(
ZeroDivisionError: Weights sum to zero, can't be normalized

Steps to reproduce

No response

GraphRAG Config Used

No response

Logs and screenshots

No response

Additional Information

  • GraphRAG Version:
  • Operating System:
  • Python Version:
  • Related Issues:

This may be caused by an invalid Api_key