and will be removed in a future version. Please use 'DataFrame.transpose' instead.
return bound(*args, **kwds)
获取嵌入向量时发生错误: [WinError 10061] 由于目标计算机积极拒绝,无法连接。
❌ create_final_entities
Steps to reproduce
ollama local instead the openai
GraphRAG Config Used
encoding_model: cl100k_base
skip_workflows: []
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_chat # or azure_openai_chat
model: mistral
model_supports_json: true # recommended if this is available for your model.
api_base: http://192.168.0.17:11434/v1
max_tokens: 4000
request_timeout: 180.0
api_base: https://.openai.azure.com
api_version: 2024-02-15-preview
organization:
deployment_name:
tokens_per_minute: 150_000 # set a leaky bucket throttle
requests_per_minute: 10_000 # set a leaky bucket throttle
max_retries: 10
max_retry_wait: 10.0
sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
concurrent_requests: 25 # the number of parallel inflight requests that may be made
temperature: 0 # temperature for sampling
top_p: 1 # top-p sampling
n: 1 # Number of completions to generate
parallelization:
stagger: 0.3
num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio
llm:
api_key: ${GRAPHRAG_API_KEY}
type: openai_embedding # or azure_openai_embedding
model: nomic-embed-text
api_base: http://192.168.0.17:11434/v1
api_base: https://.openai.azure.com
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
# tokens_per_minute: 150_000 # set a leaky bucket throttle
# requests_per_minute: 10_000 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
# batch_size: 16 # the number of documents to send in a single request
# batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
# target: required # or optional
chunks:
size: 1200
overlap: 100
group_by_columns: [id] # by default, we don't allow chunks to cross documents
input:
type: file # or blob
file_type: text # or csv
base_dir: "input"
file_encoding: utf-8
file_pattern: ".*\.txt$"
cache:
type: file # or blob
base_dir: "cache"
connection_string:
container_name:
storage:
type: file # or blob
base_dir: "output/${timestamp}/artifacts"
connection_string:
container_name:
reporting:
type: file # or console, blob
base_dir: "output/${timestamp}/reports"
connection_string:
container_name:
entity_extraction:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
{"type": "error", "data": "Error executing verb \"text_embed\" in create_final_entities: iteration over a 0-d array", "stack": "Traceback (most recent call last):\n File \"C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py\", line 415, in _execute_verb\n result = await result\n ^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py\", line 105, in text_embed\n return await _text_embed_in_memory(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py\", line 130, in _text_embed_in_memory\n result = await strategy_exec(texts, callbacks, cache, strategy_args)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 62, in run\n embeddings = await _execute(llm, text_batches, ticker, semaphore)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 108, in _execute\n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 108, in \n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nTypeError: iteration over a 0-d array\n", "source": "iteration over a 0-d array", "details": null}
{"type": "error", "data": "Error running pipeline!", "stack": "Traceback (most recent call last):\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\run.py\", line 323, in run_pipeline\n result = await workflow.run(context, callbacks)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py\", line 369, in run\n timing = await self._execute_verb(node, context, callbacks)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py\", line 415, in _execute_verb\n result = await result\n ^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py\", line 105, in text_embed\n return await _text_embed_in_memory(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py\", line 130, in _text_embed_in_memory\n result = await strategy_exec(texts, callbacks, cache, strategy_args)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 62, in run\n embeddings = await _execute(llm, text_batches, ticker, semaphore)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 108, in _execute\n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 108, in \n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nTypeError: iteration over a 0-d array\n", "source": "iteration over a 0-d array", "details": null}
AND
14:56:36,162 graphrag.index.reporting.file_workflow_callbacks INFO Error executing verb "text_embed" in create_final_entities: iteration over a 0-d array details=None
14:56:36,162 graphrag.index.run ERROR error running workflow create_final_entities
Traceback (most recent call last):
TypeError: iteration over a 0-d array
14:56:36,164 graphrag.index.reporting.file_workflow_callbacks INFO Error running pipeline! details=None
Describe the issue
and will be removed in a future version. Please use 'DataFrame.transpose' instead. return bound(*args, **kwds) 获取嵌入向量时发生错误: [WinError 10061] 由于目标计算机积极拒绝,无法连接。 ❌ create_final_entities
Steps to reproduce
ollama local instead the openai
GraphRAG Config Used
encoding_model: cl100k_base skip_workflows: [] llm: api_key: ${GRAPHRAG_API_KEY} type: openai_chat # or azure_openai_chat model: mistral model_supports_json: true # recommended if this is available for your model. api_base: http://192.168.0.17:11434/v1
max_tokens: 4000
request_timeout: 180.0
api_base: https://.openai.azure.com
api_version: 2024-02-15-preview
organization:
deployment_name:
tokens_per_minute: 150_000 # set a leaky bucket throttle
requests_per_minute: 10_000 # set a leaky bucket throttle
max_retries: 10
max_retry_wait: 10.0
sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
concurrent_requests: 25 # the number of parallel inflight requests that may be made
temperature: 0 # temperature for sampling
top_p: 1 # top-p sampling
n: 1 # Number of completions to generate
parallelization: stagger: 0.3
num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio llm: api_key: ${GRAPHRAG_API_KEY} type: openai_embedding # or azure_openai_embedding model: nomic-embed-text api_base: http://192.168.0.17:11434/v1
api_base: https://.openai.azure.com
chunks: size: 1200 overlap: 100 group_by_columns: [id] # by default, we don't allow chunks to cross documents
input: type: file # or blob file_type: text # or csv base_dir: "input" file_encoding: utf-8 file_pattern: ".*\.txt$"
cache: type: file # or blob base_dir: "cache"
connection_string:
container_name:
storage: type: file # or blob base_dir: "output/${timestamp}/artifacts"
connection_string:
container_name:
reporting: type: file # or console, blob base_dir: "output/${timestamp}/reports"
connection_string:
container_name:
entity_extraction:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/entity_extraction.txt" entity_types: [organization,person,geo,event] max_gleanings: 1
summarize_descriptions:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/summarize_descriptions.txt" max_length: 500
claim_extraction:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
enabled: true
prompt: "prompts/claim_extraction.txt" description: "Any claims or facts that could be relevant to information discovery." max_gleanings: 1
community_reports:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/community_report.txt" max_length: 2000 max_input_length: 8000
cluster_graph: max_cluster_size: 10
embed_graph: enabled: false # if true, will generate node2vec embeddings for nodes
num_walks: 10
walk_length: 40
window_size: 2
iterations: 3
random_seed: 597832
umap: enabled: false # if true, will generate UMAP embeddings for nodes
snapshots: graphml: false raw_entities: false top_level_nodes: false
local_search:
text_unit_prop: 0.5
community_prop: 0.1
conversation_history_max_turns: 5
top_k_mapped_entities: 10
top_k_relationships: 10
llm_temperature: 0 # temperature for sampling
llm_top_p: 1 # top-p sampling
llm_n: 1 # Number of completions to generate
max_tokens: 12000
global_search:
llm_temperature: 0 # temperature for sampling
llm_top_p: 1 # top-p sampling
llm_n: 1 # Number of completions to generate
max_tokens: 12000
data_max_tokens: 12000
map_max_tokens: 1000
reduce_max_tokens: 2000
concurrency: 32
Logs and screenshots
{"type": "error", "data": "Error executing verb \"text_embed\" in create_final_entities: iteration over a 0-d array", "stack": "Traceback (most recent call last):\n File \"C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py\", line 415, in _execute_verb\n result = await result\n ^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py\", line 105, in text_embed\n return await _text_embed_in_memory(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py\", line 130, in _text_embed_in_memory\n result = await strategy_exec(texts, callbacks, cache, strategy_args)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 62, in run\n embeddings = await _execute(llm, text_batches, ticker, semaphore)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 108, in _execute\n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 108, in\n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nTypeError: iteration over a 0-d array\n", "source": "iteration over a 0-d array", "details": null}
{"type": "error", "data": "Error running pipeline!", "stack": "Traceback (most recent call last):\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\run.py\", line 323, in run_pipeline\n result = await workflow.run(context, callbacks)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py\", line 369, in run\n timing = await self._execute_verb(node, context, callbacks)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"C:\Users\admin\AppData\Local\pypoetry\Cache\virtualenvs\graphrag-Me9XHZ9h-py3.11\Lib\site-packages\datashaper\workflow\workflow.py\", line 415, in _execute_verb\n result = await result\n ^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py\", line 105, in text_embed\n return await _text_embed_in_memory(\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\text_embed.py\", line 130, in _text_embed_in_memory\n result = await strategy_exec(texts, callbacks, cache, strategy_args)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 62, in run\n embeddings = await _execute(llm, text_batches, ticker, semaphore)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 108, in _execute\n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"E:\pythonworkspace\Graph_RAG\graphrag\graphrag\index\verbs\text\embed\strategies\openai.py\", line 108, in \n return [item for sublist in results for item in sublist]\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nTypeError: iteration over a 0-d array\n", "source": "iteration over a 0-d array", "details": null}
AND
14:56:36,162 graphrag.index.reporting.file_workflow_callbacks INFO Error executing verb "text_embed" in create_final_entities: iteration over a 0-d array details=None
14:56:36,162 graphrag.index.run ERROR error running workflow create_final_entities
Traceback (most recent call last):
TypeError: iteration over a 0-d array
14:56:36,164 graphrag.index.reporting.file_workflow_callbacks INFO Error running pipeline! details=None
Additional Information