Closed kapa2004 closed 3 months ago
请问您是如何解决这个问题的
Hi! Solution?
hi?
same
The.txt set format to UTF-8.
Instead of using > operator, that includes everything returned from the website, -o should be used for downloading the file. Changing to -o attribute fixes the error.
Change this - curl https://www.gutenberg.org/cache/epub/24022/pg24022.txt > ./ragtest/input/book.txt To this - curl https://www.gutenberg.org/cache/epub/24022/pg24022.txt -o ./ragtest/input/book.txt
The.txt set format to UTF-8.
This fixed the issue for me. Thank you.
How to change format> --> just open the file in a notpad and save it again, change the format to UTF-8.
Instead of using > operator, that includes everything returned from the website, -o should be used for downloading the file. Changing to -o attribute fixes the error.
Change this - curl https://www.gutenberg.org/cache/epub/24022/pg24022.txt > ./ragtest/input/book.txt To this - curl https://www.gutenberg.org/cache/epub/24022/pg24022.txt -o ./ragtest/input/book.txt
thank you this fixed my problem
Describe the issue
Just tried to load in a simple txt file.
In the terminal is goes until : ⠼ GraphRAG Indexer ├── Loading Input (text) - 1 files loaded (0 filtered) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00 0:00:00 ├── create_base_text_units ├── create_base_extracted_entities ├── create_summarized_entities └── create_base_entity_graph ❌ Errors occurred during the pipeline run, see logs for more details.
Steps to reproduce
No response
GraphRAG Config Used
encoding_model: cl100k_base skip_workflows: [] llm: api_key: ${GRAPHRAG_API_KEY} type: openai_chat # or azure_openai_chat model: gpt-4-turbo-preview model_supports_json: true # recommended if this is available for your model.
max_tokens: 4000
request_timeout: 180.0
api_base: https://.openai.azure.com
api_version: 2024-02-15-preview
organization:
deployment_name:
tokens_per_minute: 150_000 # set a leaky bucket throttle
requests_per_minute: 10_000 # set a leaky bucket throttle
max_retries: 10
max_retry_wait: 10.0
sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
concurrent_requests: 25 # the number of parallel inflight requests that may be made
temperature: 0 # temperature for sampling
top_p: 1 # top-p sampling
n: 1 # Number of completions to generate
parallelization: stagger: 0.3
num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio llm: api_key: ${GRAPHRAG_API_KEY} type: openai_embedding # or azure_openai_embedding model: text-embedding-3-small
api_base: https://.openai.azure.com
chunks: size: 1200 overlap: 100 group_by_columns: [id] # by default, we don't allow chunks to cross documents
input: type: file # or blob file_type: text # or csv base_dir: "input" file_encoding: utf-8 file_pattern: ".*\.txt$"
cache: type: file # or blob base_dir: "cache"
connection_string:
container_name:
storage: type: file # or blob base_dir: "output/${timestamp}/artifacts"
connection_string:
container_name:
reporting: type: file # or console, blob base_dir: "output/${timestamp}/reports"
connection_string:
container_name:
entity_extraction:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/entity_extraction.txt" entity_types: [organization,person,geo,event] max_gleanings: 1
summarize_descriptions:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/summarize_descriptions.txt" max_length: 500
claim_extraction:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
enabled: true
prompt: "prompts/claim_extraction.txt" description: "Any claims or facts that could be relevant to information discovery." max_gleanings: 1
community_reports:
llm: override the global llm settings for this task
parallelization: override the global parallelization settings for this task
async_mode: override the global async_mode settings for this task
prompt: "prompts/community_report.txt" max_length: 2000 max_input_length: 8000
cluster_graph: max_cluster_size: 10
embed_graph: enabled: false # if true, will generate node2vec embeddings for nodes
num_walks: 10
walk_length: 40
window_size: 2
iterations: 3
random_seed: 597832
umap: enabled: false # if true, will generate UMAP embeddings for nodes
snapshots: graphml: false raw_entities: false top_level_nodes: false
local_search:
text_unit_prop: 0.5
community_prop: 0.1
conversation_history_max_turns: 5
top_k_mapped_entities: 10
top_k_relationships: 10
llm_temperature: 0 # temperature for sampling
llm_top_p: 1 # top-p sampling
llm_n: 1 # Number of completions to generate
max_tokens: 12000
global_search:
llm_temperature: 0 # temperature for sampling
llm_top_p: 1 # top-p sampling
llm_n: 1 # Number of completions to generate
max_tokens: 12000
data_max_tokens: 12000
map_max_tokens: 1000
reduce_max_tokens: 2000
concurrency: 32
Logs and screenshots
{"type": "error", "data": "Error executing verb \"orderby\" in create_base_text_units: 'id'", "stack": "Traceback (most recent call last):\n File \"C:\Users\\u00c1ronHet\u00e9nyi\graphrag\.venv\lib\site-packages\datashaper\workflow\workflow.py\", line 410, in _execute_verb\n result = node.verb.func(verb_args)\n File \"C:\Users\\u00c1ronHet\u00e9nyi\graphrag\.venv\lib\site-packages\datashaper\engine\verbs\orderby.py\", line 32, in orderby\n output = input_table.sort_values(by=columns, ascending=ascending)\n File \"C:\Users\\u00c1ronHet\u00e9nyi\graphrag\.venv\lib\site-packages\pandas\core\frame.py\", line 7189, in sort_values\n k = self._get_label_or_level_values(by[0], axis=axis)\n File \"C:\Users\\u00c1ronHet\u00e9nyi\graphrag\.venv\lib\site-packages\pandas\core\generic.py\", line 1911, in _get_label_or_level_values\n raise KeyError(key)\nKeyError: 'id'\n", "source": "'id'", "details": null} {"type": "error", "data": "Error running pipeline!", "stack": "Traceback (most recent call last):\n File \"C:\Users\\u00c1ronHet\u00e9nyi\graphrag\graphrag\index\run.py\", line 323, in run_pipeline\n result = await workflow.run(context, callbacks)\n File \"C:\Users\\u00c1ronHet\u00e9nyi\graphrag\.venv\lib\site-packages\datashaper\workflow\workflow.py\", line 369, in run\n timing = await self._execute_verb(node, context, callbacks)\n File \"C:\Users\\u00c1ronHet\u00e9nyi\graphrag\.venv\lib\site-packages\datashaper\workflow\workflow.py\", line 410, in _execute_verb\n result = node.verb.func(verb_args)\n File \"C:\Users\\u00c1ronHet\u00e9nyi\graphrag\.venv\lib\site-packages\datashaper\engine\verbs\orderby.py\", line 32, in orderby\n output = input_table.sort_values(by=columns, ascending=ascending)\n File \"C:\Users\\u00c1ronHet\u00e9nyi\graphrag\.venv\lib\site-packages\pandas\core\frame.py\", line 7189, in sort_values\n k = self._get_label_or_level_values(by[0], axis=axis)\n File \"C:\Users\\u00c1ronHet\u00e9nyi\graphrag\.venv\lib\site-packages\pandas\core\generic.py\", line 1911, in _get_label_or_level_values\n raise KeyError(key)\nKeyError: 'id'\n", "source": "'id'", "details": null}
Additional Information